3장 양적 데이터 시각화

3.1 한 양적 변량 데이터의 그래프

- 신장, 체중과 같이 가능한 값이 실수인 형태를 양적 변량 데이터라 한다. 이와 같
 은 한 양적 변량 데이터 시각화에는 점그래프, 히스토그램, 줄기와 잎 그림 등이
 이용된다.
- 요사이 미세먼지가 자주 발생해 우리 생활에 불편을 주고 있다. 과연 한 달 중 며칠이나 미세먼지가 심하게 발생하는지 살펴보기 위해 서울의 미세먼지농도를 조사한 자료가 다음과 같다. 『eStat』을 이용하여 점그래프, 히스토그램, 줄기와 잎 그림 등을 그려 보자.

표 3.1 2021년 2월 서울의 일평균 초미세먼지농도 (μg/m³ (환경부 대기환경정보 http://www.airkorea.or.kr 참조)

39	18	20	22	16	44	59	18	16	23
53	76	77	76	37	15	13	17	24	42
46	30	18	25	34	24	11	14		

『eStat』시스템에서 시트의 V1에 28개의 데이터를 모두 입력하고 변량편집으로 V1의 변량명을 '미세먼지'로 지정한다. 점그래프 아이콘 👥을 클릭한 후 마우스로 첫째 변량 '미세먼지'를 선택하면 [그림 3.1]과 같은 미세먼지농도에 대한 점그 래프가 그려진다. 분석변량 선택 박스에서 '미세먼지'를 선택해도 된다. 그래프 밑의 선택사항에서 '평균/표준편차'를 체크하면 [그림 3.2]와 같이 데이터의 평균과 (평균)±(표준편차) 구간을 같이 관찰 할 수 있다, 미세먼지농도가 평균의 왼쪽에 데이터가 많고, 평균 오른쪽에 몇 개의 데이터가 분포되어 있음을 관찰 할 수 있다.

히스토그램 아이콘 🛄을 클릭하면 [그림 3.3]과 같은 그래프가 나타난다. 그래프
 밑의 선택사항에서 평균, 도수표시, 도수분포다각형을 체크하면 [그림 3.4]와 같이

히스토그램 위에 도수분포다각형이 표시된다. 히스토그램을 살펴보면 역시 평균 의 왼쪽에 데이터가 많고, 평균 오른쪽에 몇 개의 데이터가 분포되어 있음을 관 찰 할 수 있다.

 '도수분포표' 버튼을 클릭하면 [그림 3.5]와 같이 결과저장창에 현재 그려진 히스 토그램의 각 구간별 도수분포표가 출력된다.

히스토그램 도수분포표	그롤명	0
계급구간 (V1)		합계
1	11	11
[11.00, 20.43)	(39.3%)	(39.3%)
2	5	5
[20.43, 29.86)	(17.9%)	(17.9%)
3	4	4
[29.86, 39.29)	(14.3%)	(14.3%)
4	3	3
[39.29, 48.71)	(10.7%)	(10.7%)
5	1	1
[48.71, 58.14)	(3.6%)	(3.6%)
6	1	1
[58.14, 67.57)	(3.6%)	(3.6%)
7	3	3
[67.57, 77.00)	(10.7%)	(10.7%)
합계	28 (100%)	28 (100%)

[그림 3.5] 히스토그램의 도수분포표

• 히스토그램에서 구간의 수와 구간의 너비는 『eStat』시스템이 자동적으로 계산 하는데 사용자가 그래프 밑의 선택사항([그림 3.6]에서 구간시작과 구간너비를 지 정해서 다시 그릴 수도 있다.

🗏 평균 🔲 도수표시 🗍	- 도수분포디	사각형	도수분포표	
새 구간으로 실행	구간시작	0	구간너비	10
[그림 3.6]	히스토.	그램	의 선택사형	ŀ

• 줄기와 잎 그림 아이콘 📰을 클릭하면 [그림 3.7]과 같은 그래프가 나타난다. 이 그래프는 히스토그램의 변형 형태로서 여기서는 구간 [10, 20), [20, 30), ... [70,

80)에 속하는 데이터를 찾아낸 후 각 구간의 한 자릿수를 줄기로 하고 이 구간에 속하는 데이터의 소숫점 이하 자릿수를 잎 형태로 하여 표시한 것이다. 각 구간 에 속하는 데이터의 끝자리 수는 작은 값에서 큰 값 순으로 정렬한다.

	VI의 줄거와 잎 그림	
쯀기	<u> 앞</u>	
1	1345667888	
2	023445	
3	9479 944	
	30	
8		
7	667	

그룹별 한 양적 변량의 그래프

- 한 중학교 선생님의 성별과 나이를 조사한 데이터가 ▲ □ 01Korean □ 032연속
 _선생님성별나이.csv에 저장되어 있다. 『eStat』을 이용하여 점그래프, 히스토그 램, 줄기와 잎 그림 등을 그려 보자.
- 『eStat』시스템에서 座 ▷ 01Korean ▷ 032연속_선생님성별나이.csv를 불러오 면 [그림 3.8]과 같다.

분석변	변량		b	y 그름	
			v]		
(시토의	변량명 플릭스	으로 선택 가능)	(묘약자)	료 여러 변량	선택
선택빈	!량				
	성별	나이	V3	V4	
1	1	26			
2	1	34			
3	2	28			
4	2	39			
5	1	32			
6	1	36			
7	2	41			
8	2	42			
9	1	26			
10	1	25			
11	2	33			
12	2	43			
13	1	54			
14	1	49			
15	2	56			
16	2	31			
17	2	27			
18	1	42			
19	2	32			
20	2	36			

 점그래프 아이콘 ::: 을 클릭한 후 마우스로 변량 '나이'와 '성별'을 선택하면 [그 림 3.9]와 같은 남녀별 나이의 점그래프가 그려진다. '분석변량' 선택박스에서 '나 이'를, 'by 그룹' 선택박스에서 '성별'을 선택하여도 된다. 그래프 밑의 선택사항에 서 '평균/표준편차'를 체크하면 [그림 3.10]와 같이 평균선과 (평균)±(표준편차) 구 간이 점그래프위에 표시된다.

[그림 3.9] 성별 나이의 점그래프

[그림 3.10] 평균±표준편차 점그래프

- 성별 선생님 나이를 살펴보면 여자 선생님의 나이 평균이 더 높음을 알 수 있다.
 이와 같은 두 그룹에 대한 통계적인 비교 분석은 8장에서 자세히 살펴본다.
- 히스토그램 아이콘 🛄을 클릭하면 [그림 3.11]과 같은 그래프가 나타난다. 그래프 밑의 선택사항을 이용하면 히스토그램 위에 평균, 도수표시, 도수분포다각형을 그 릴 수 있으며([그림 3.12]), 각 구간에 대한 도수분포표([그림 3.13])를 결과저장창 에 나타낼 수 있다.

[그림 3.11] 성별 나이의 히스토그램

[그림 3.12] 성별 도수분포다각형

구간별 도수분포표	그룹명	(성별)	
계급구간 (나이)	그룹1 (그룹1)	그룹2 (그룹2)	합계
1	3	2	5
[25.00, 30.43)	(23.1%)	(11.8%)	(16.7%)
2	3	4	7
[30.43, 35.86)	(23.1%)	(23.5%)	(23.3%)
3	1	3	4
[35.86, 41.29)	(7.7%)	(17.6%)	(13.3%)
4	3	3	6
[41.29, 46.71)	(23.1%)	(17.6%)	(20.0%)
5	1	1	2
[46.71, 52.14)	(7.7%)	(5.9%)	(6.7%)
6	1	2	3
[52.14, 57.57)	(7.7%)	(11.8%)	(10.0%)
7	1	2	3
[57.57, 63.00)	(7.7%)	(11.8%)	(10.0%)
합계	13	17	30
	(100%)	(100%)	(100%)

[그림 3.13] 선생님 성별 나이의 히스토그램에 대한 구간별 도수분포표

- 히스토그램에서 구간의 수와 구간의 너비는 자동적으로 계산하는데 사용자가 구 간시작과 구간너비를 지정해서 다시 그릴 수도 있다.
- 줄기와 잎 그림 아이콘 完을 클릭하면 [그림 3.14]와 같은 그래프가 나타난다.
 이 그래프는 히스토그램의 변형 형태로 여기서는 각 그룹별로 구간 [20, 30), [30, 40), ... [60, 69)에 속하는 데이터를 조사하여 각 구간의 십자리수를 줄기로 하고 그 구간에 속하는 데이터의 끝자리 수를 잎 형태로 하여 표시한 것이다. 각 구간에 속하는 데이터의 끝자리 수는 작은 값에서 큰 값 순으로 정렬한다. 그룹이 두 개일 경우에는 부아이콘 完을 클릭하면 [그림 3.15]와 같은 양쪽형 줄기와 잎 그 림을 그릴 수도 있다.

『eStatU』를 이용한 그래프

 『eStatU』를 이용하여 표 3.1의 미세먼지 농도 데이터에 대한 줄기와 잎 그림을 그려보자. 『eStatU』 메뉴에서 '줄기와 잎 그림'을 선택하면 [그림 3.16]과 같은 창이 나타난다. '자료 입력'에 미세먼지농도 자료를 입력하고 '주 제목'에 원하는 그림 제목을 입력한다. [실행] 버튼을 클릭하면 아래와 같은 줄기와 잎 그림이 나 타난다.

	Constant and a	. 61																
다료 입력[39 18 2	0 22	16 44	59 1	8 16	23 53	8 76	77 7	76	37	15	13	17	24	42	46	30	18
주제목 : [2021년 2	월 서	울의 미	세먼지	농도	8												
일명 <u></u> ** 4	의내 물~	1 수	≤ 30 *															
			202	1년	2월	서울	의	기서	민만	고	농	5 5						
줄기	잎		202	1년	2월	서울	의	기서	만	고	농	55	-					
<u>줄기</u>	잎	3 4	202	1년 78	2월 8 8	서울	의	기서	민		농	55	-					
줄기 1 2 3	잎 1 0 0	3 4 2 3 4 7	202	1년 78	2월 88	서울	의	미서	민	코지	농	5 5	-					
줄기 1 2 3 4	잎 1 0 0 2	3 4 2 3 4 7 4 6	202	1년 78	2월 88	서울	의	미서	P	고	P	55	-					
<mark>줄기</mark> 1 2 3 4 5	오 1 0 2 3	3 4 2 3 4 7 4 6 9	202 5 6 6 4 4 5 9	1년 78	2월 88	서울	의	기서	만	1지	농	5 5	-					

[그림 3.16] 미세먼지 농도의 줄기와 잎 그림

『eStatU』 메뉴에서 '히스토그램 - 도수분포표'를 선택하면 [그림 3.17]과 같은 자료 입력창이 나타난다. '자료 입력'에 일별 최저기온 자료를 입력하면 즉시 [그 림 3.16]과 같이 입력된 자료수 28과 최솟값이 -10.6도이고 최댓값이 6.4도임을 보여준다. 이 정보를 이용하여 구간시작과 구간너비를 정할 수 있다. 여기서는 구 간시작을 -15, 구간너비를 5도로 정하였다. 원하는 제목을 입력하고 [실행] 버튼 을 클릭하면 [그림 3.18]과 같은 히스토그램이 나타난다.

주 제 <mark>목</mark>	2021년	2월 서울의 미세	먼지 농도			
<mark>네로축 제</mark> 목	· 도수		<mark>가로축 제</mark> 목			
사료 입력	39 18 20	22 16 44 59 1	8 16 23 53 7	6 77 76 37	' 15 <mark>1</mark> 3 17 24 42	46 30
자료수	n	28	최솟값	min	11.00	
평균	μ	32.39	최댓값	max	77.00	
중앙값	m	24.00	범위	range	66.00	
분산	σ^2	386.67	표준편차	σ	19.66	
1 간시작		l0 (≤min) 7	간너비	10 히 .	스토그램 색	

[그림 3.17] 히스토그램의 자료 입력창

[그림 3.18] 서울의 미세먼지농도에 대한 히스토그램

3.2 두 양적 변량 데이터의 그래프

- 일반적으로 한 관찰대상에 대해 데이터를 수집할 경우 하나 이상의 변량에 대한 정보를 수집한다. 예를 들어, 한 초등학교 학생에 대해서는 성별과 함께 신장 및 체중을 같이 조사할 수 있다. 즉, 한 개의 범주형 변량과 두 양적 변량을 측정하 는 경우이다.
- 이와 같이 두 개의 양적 변량을 측정한 데이터는 산점도(scatter plot)를 이용하여 두 변량의 관련성 등을 분석할 수 있다. 두 양적 변량에 대한 상관 및 회귀분 석은 12장에서 자세히 살펴본다. 산점도는 한 변량의 값을 x축, 다른 변량의 값을 y축으로 하여 2차원 평면위에 각각의 데이터를 표시한 것이다. 만일 성별과 같은 범주형 변량을 같이 측정하여 그룹으로 하였다면 각 그룹의 색을 구분하여 산점도를 그릴 수 있다.
- 한 초등학교 학급 10명의 성별, 신장, 체중을 조사한 데이터가 ☞ □ 01Korean ▷ 035연속_성별신장체중.csv에 저장되어 있다. 이 데이터를 불러오면 [그림 3.19] 와 같다.

분석	변량		by	그룹
() == 0	내 바 만 다 그 귀나		· ····	or all P
1택	1000 1양		/ 124/12	444
	성별	신장	체중	V4
1	1	150	45	
2	2	147	47	
3	1	145	44	
4	2	151	50	
5	1	149	48	
б	2	148	47	
7	1	155	51	
8	2	156	50	
9	1	161	55	
10	2	159	56	

- 『eStat』을 이용하여 신장과 체중의 산점도를 그리고 성별 신장과 체중의 산점 도를 그려보자.
- 『eStat』시스템에서는 🔤 다 01Korean 다 035연속_성별신장체중.csv를 불러온 다. 산점도 아이콘 🐖을 클릭한 후 마우스로 '체중'과 '신장'을 클릭하면 [그림 3.20]과 같은 체중을 v축(첫 번째 선택된 변량), 신장을 x축(두 번째 선택된 변 량)으로 한 산점도가 그려진다. 'Y변량' 선택박스에서 '체중'을, 'by X변량' 선택박 스에서 '신장'을 선택하여도 된다. 그래프 밑의 선택사항에서 '회귀선'을 체크하면 체중과 신장과의 관계를 나타내는 회귀선이 [그림 3.21]과 같이 표시된다. 산점도 를 살펴보면 신장이 클수록 체중도 상대적으로 많이 나가는 것을 관찰할 수 있 다. 회귀선에 대한 자세한 내용은 12장을 참조하기 바란다.

[그림 3.20] 신장 및 체중의 산점도

서장

• 성별로 그룹이 표시된 산점도를 그리려면 선택사항의 '그룹' 박스에서 '성별'을 선 택하면 [그림 3.22]와 같이 성별이 다른 색으로 표시된 그림이 나타난다. 선택사 항에서 '회귀선'을 체크하면 [그림 3.23]과 같이 각 그룹별 회귀선이 이 표시된다.

• 선택사항에서 '크기변량'을 선택하면 이 변량의 크기에 비례한 원들로 표시된 [그

림 3.24]와 같은 산점도가 나타난다.

