4. 자료의 대푯값과 산포도

양적 자료인 경우에 자료의 대푯값과 산포도를 측정하여 분석한다.

- 자료의 대푯값 - 평균 / 중앙값 - 자료의 산포도 - 분산 / 표준편차

두 변수 자료는 산점도와 상관계수를 이용하여 분석한다.

4.1 자료의 대푯값 - 평균 / 중앙값

☞ 생각열기	한 중학교 학생 5명을 표본 추출하여 몸무게를 조사한 자료가 다음과 같다.
	(자료 4.1) 한 중학교 학생 5명 표본의 몸무게 (kg)
	63 60 65 55 77
탐구	1) 이 자료들을 대표할 수 있는 대푯값을 찾기위한 그래프는 어떠한 것이 있을까? 2) 10명의 학생 몸무게를 대표할 만한 값으로는 어떠한 것이 있을까?

이와 같은 5개의 몸무게 자료를 대표할 만한 값으로 많이 쓰이는 것이 평균이
 다. 평균은 모든 자료를 더한 후 이를 자료의 수로 나눈 것인데 자료의 무게중
 심을 의미한다. 평균은 μ (뮤라 읽음)로 표시하는데 (자료 4.1)의 평균은 다음
 과 같이 구한다.

평균 =
$$\mu = \frac{63+60+65+55+77}{5} = \frac{320}{5} = 64$$

• n개의 자료를 x₁, x₂, ..., x_n으로 표시하였을 때 평균은 다음과 같은 공식으로 나타낼 수 있다.

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 일반적으로 평균은 자료를 대표하는 값으로 매우 적절하지만 자료 중에 매우 큰 값이나 작은 값이 있을 때는 이 값에 영향을 많이 받는다. 이러한 경우 중 양값이 이용된다. 중앙값은 자료를 순서대로 정렬하였을 때 그 중앙에 있는 값 을 의미한다. (자료 4.1)에서는 홀수인 5개의 자료가 있어 그 중앙인 3번째 (<u>자료수+1</u> 번째) 자료가 중앙값으로 다음과 같이 구한다.

(자료 4.1)을 오름차순으로 정렬한다.

55 60 63 65 77

중앙값은 오름차순으로 정리한 자료의 3번째 자료인 63이다.

• 만일 자료가 6개인 짝수인 경우 중앙값은 어떻게 구할까? 이 경우 자료의 중앙

값은 정렬된 자료의 3번째(재학) 와 4번째(재학+2)의 평균으로 계산한다.

• 일반적으로 중앙값은 m으로 표시하고 구하는 방법은 다음과 같다.

- 위와 같은 몸무게 자료의 전반적인 분포를 보기위해서는 앞에서 살펴본 줄기와 잎 그림이나 히스토그램을 생각할 수 있지만 자료를 대표하는 값을 살펴보기에 는 점그래프가 적절하다. 점그래프는 자료의 최솟값과 최댓값을 구한 후 가로 축 상에 이 값들을 먼저 표시하고, 각각의 자료를 최솟값과 최댓값에 비례한 위치를 계산하여 점으로 표시한 것이다.
- <그림 4.1>은 (자료 4.1)에 대한 점그래프이다. 최솟값 55와 최댓값 76에 비례 해서 각각의 자료를 동그란 점으로 표시한 것이다. 초록색 선이 평균 μ이고 빨 강 선이 중앙값 m이다. 이 자료에서는 평균이 중앙값보다 약간 우측에 위치해 있는데 그 이유는 자료 중에서 77이 나머지 네 개의 자료보다느 오른쪽에 위치 해 있기 때문이다. 즉 평균은 중앙값보다 극단값에 민감하다.

<그림 4.1> 5명의 몸무게에 대한 점그래프

자료가 많을 경우 위와 같이 수작업으로 평균과 중앙값을 구하는 것은 시간도 많이 걸리고 쉽지 않다. 『eStat』소프트웨어를 이용하여 자료의 대푯값을 구해보자.

실습 4.1	『eStat』을 이용하여 (자료 4.1) 5명 학생들의 몸무게에 대한 점그 래프를 그리고 평균 및 중앙값을 구해보자.
풀이	 왼쪽의 QR을 이용해 『eStatH』 메뉴에서 '점그래프 - 평균/표 준편차'를 선택하면 <그림 4.2>와 같은 창이 나타난다. '자료 입력'에 학생들의 몸무게 자료를 입력한다. (전자책에서 자료를 복사하여 붙여넣기를 해도 됨)
	점그래프 - 평균/표준면차 매뉴 [자료 입력] 63 60 65 55 77 정렬자료 55,60,63,65,77 자료수 n 5 평균 4 64.00 최댓값 max 중앙값 m 63.00 범위 range 초빈값 mode 분산 조면차 7.32
	 자료를 입력하면 자료수, 최솟값, 최댓값, 평균, 중앙값 등이 계 산된다. [실행] 버튼을 클릭하면 <그림 4.1>과 같은 점그래프가 나타나고 평균 및 중앙값이 표시된다. <그림 4.1> 아래에는 <그림 4.3>과 같은 시뮬레이션 창이 나타 난다. 이 시뮬레이션은 마우스로 한 점을 이동시켜 평균과 중앙 값의 변화를 살펴보는 것이다. 예를 들어 제일 오른쪽의 점을 마 우스로 끌어 오른쪽으로 이동하면 평균은 변하지만 중앙값은 변 하지 않는다. 즉 중앙값은 극단점에 영향을 받지 않는다.
	+*** 시뮬레이션 **** (마우스로 한 점을 이동) 35 40 45 50 55 60 65 70 75 80 85 90 μ-σ μ=64.00 μ+σ σ=7.32 m=63.00
	<그림 4.3> 한 점의 변화에 따른 평균 / 중앙값 변화의 관찰 시뮬레이션

실습 4.2	『eStat』을 이용하여 우리나라의 2월 서울의 일별 최저기온([실 습 3.2])을 조사한 (자료 3.2)에 대하여 평균 및 중앙값을 구해보 자.
	(자료 3.2) 2021년 2월 서울의 일별 최저기온 (섭씨 도) (기상청) -2.3 -8.2 -9.4 -7.4 -4.4 4.3 -2.6 5.4 -6.1 -1.5 1.3 0.6 1.0 6.4 -5.2 -7.0 -10.4 -10.6 -7.1 5.5 4.7 0.4 -3.1 -3.0 0.7 0.5 4.3 3.2
풀이	• 왼쪽의 QR을 이용하여 나타나는『eStatH』 메뉴에서 '점그래 프 - 평균 / 표준편차'를 선택하면 <그림 4.4>와 같은 자료 입 력창이 나타난다.
	점그래프 - 평균/표준편차 메뇨 [자료입력] 3 0.6 1.0 6.4-5.2 -7.0 -10.4 -10.6 -7.1 5.5 4.7 0.4 -3.1 -3.0 0.7 0.5 4.3 3.2 정렬자료 -10.6,-10.4,-9.4,-8.2,-7.4,-7.1,-7,-6.1,-5.2,-4.4,-3.1,-3,-2.6,-2.3,-1.5,0.4,0.4 자료수 n 28 최솟값 min -10.60 평균 μ -1.79 최댓값 max 6.40 중앙값 m -1.90 범위 range 17.00 최빈값 mode 4.3 분산 σ ² 26.11 실행 표준편차 σ 5.11
	 <그림 4.4> 점그래프의 자료입력 상자 '자료 입력'에 일별 최저기온 자료를 입력하면 (전자책에서 자료를 복사하여 붙여넣기를 해도 됨) 즉시 <그림 4.4>와 같이 입력된 자료수 28, 평균 -1.79, 중앙값 -1.90, 최솟값 -10.6도, 최댓값이 6.4도임을 보여준다. [실행] 버튼을 클릭하면 <그림 4.5>와 같은 점그래프가 나타나고 평균(μ) 및 중앙값(m)이 표시된다. 이 점그래프 아래에는 점을 마우스로 변화시키며 평균과 중앙값의 변화를 살펴볼수 있는 시뮬레이션창이 나타난다.
	 <그림 4.5> 일별 최저기온의 점그래프와 시뮬레이션창 이 점그래프를 살펴보면 극단값이 업어 평균과 중앙값의 차이 가 거의 없음을 알 수 있다.

다음은 2016년 현재 서울의 25개 행정구별 자전거 전용 도로 길이 과제 4.1 에 대한 자료이다 ([과제 3.1]). 『eStat』을 이용하여 점그래프와 자료의 대푯값을 구하고 분석하라. (자료 3.3) 2019년 서울의 자전거 도로 (단위 km) (서울통계정보시스템) 24 15 23 20 30 24 7 8 7 12 28 27 19 35 41 42 11 8 37 13 20 29 53 93 42

과제 4.2 다음은 2020년 우리나라를 통과한 태풍의 최대 풍속에 대한 자료 이다 ([과제 3.2]). 『eStat』을 이용하여 점그래프와 자료의 대푯 값을 구하고 분석하라. (자료 3.4) 2020년 우리나라를 통과한 태품의 최대풍속 (단위 m/초) (기상청) 40 22 21 29 19 22 24 45 49 55 24 27 29 35 19 24 35 40 56 24 21 43 18

가. 도수분포표에서 평균구하기

☞ 생각열기	다음과 같이 한 중 자.	중학교 학급의 학력고사	성적의 도수분포표	가 주어졌다고 하
		[표 4.1] 중학교 학력고서	사성적의 도수분포표	1
		계급	도수(개)	
		0 [%] ~ 70	2	
		70 ~ 80	10	
		80 ~ 90	15	
		90 ~ 100	3	
		합계	30	
탐구	이 자료들을 대표	할 수 있는 평균을 어떻	렇게 구할까?	

- 원 자료가 아니라 도수분포표가 주어졌을 때 평균은 중간값을 이용해 근사적으로 다음과 같이 구할 수 있다.
- 먼저 각 계급의 중간값을 구한다. 그리고 각 계급에 도수만큼 중간값이 있다고 생각하고 이 근사 자료를 이용하여 평균을 구한다.

계급	중간값	도수(개)	근사 자료
야당 마 60 ~ 70	65	2	65 65
70 ~ 80	75	5	75 75 75 75 75
80 ~ 90	85	10	85 85 85 85 85 85 85 85 85 85 85
90 ~ 100	95	3	95 95 95
합계		20	

[표 4.2] 중간값을 이용한 중학교 학력고사 성적의 근사 자료

• 즉 평균은 다음과 같다.

20

$$= \frac{65 \times 2 + 75 \times 5 + 85 \times 10 + 95 \times 3}{20}$$
$$= \frac{1640}{20} = 82$$

• 『eStatH』의 '도수분포다각형 - 상대도수 비교'를 이용하면 도수분포표의 근 사적인 평균을 <그림 4.6>과 같이 구할 수 있다. 계급구간의 왼쪽값과 도수1을 입력한 후 [실행] 버튼을 누르면 된다.

<그림 4.6> 도수분포표를 이용한 평균의 계산

4.2 자료의 산포도 - 표준편차

☞ 생각열기	한 중학교	학생 5명의 퀴즈 성적(10점 만점)이 다음과 같다.
		(자료 4.2) 한 중학교 학생 5명의 퀴즈 성적 (10점 만점)
		6 8 7 4 10
탐구	이 자료들	이 흩어져 있는 정도를 측정하는 방법이 있을까?

 자료들이 흩어져 있는 정도를 산포도라 부른다. 산포도의 간단한 측정 방법은 최댓값에서 최솟값을 뺀 범위이다.

범위 = 최댓값 - 최솟값

(자료 4.2)에서 최댓값은 10이고 최소값은 4이므로 범위는 22이다.

범위 = 10 - 4 = 6

- 이러한 범위는 극단값에 너무 민감하기 때문에 산포도의 측정에는 일반적으로
 분산 또는 표준편차를 많이 이용한다. 분산은 각 자료값과 평균과의 거리를 제곱하여 합을 구한 후 이를 자료의 수로 나눈 것이다. 따라서 자료가 평균을 중심으로 많이 흩어져 있으면 분산이 커지고, 자료가 평균주위에 몰려 있으면 분산이 작게 된다. 분산은 *σ*²(시그마 제곱으로 읽음)으로 표시한다.
- 자료 <4.2>에서 평균은 다음과 같다.

평균 =
$$\mu = \frac{6+8+7+4+10}{5} = \frac{35}{5} = 7$$

 분산은 평균에서 각 측정값까지의 거리를 제곱하여 합을 구한 후 그 평균을 구 한 것이다. 즉, 거리제곱의 평균이다.

$$\stackrel{\text{tr}}{=} \diamond t = \sigma^2 = \frac{(6-7)^2 + (8-7)^2 + (7-7)^2 + (4-7)^2 + (10-7)^2}{5} = \frac{20}{5} = 4$$

 n개의 자료를 x₁, x₂, ..., x_n으로 표시하고 평균을 μ로 표시하였을 때 분산은 다 음과 같은 공식으로 나타낼 수 있다.

분산
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
 $(n: 자료수)$

• 표준편차(standard deviation)는 분산의 제곱근으로 정의하고 σ로 표시한다. 분 산은 제곱거리의 평균이어서 현실적인 해석이 쉽지 않으나 표준편차는 분산의 제곱근이어서 각 값과 평균과의 평균거리의 측도로 해석이 가능하다.

표준편차 $\sigma = \sqrt{\sigma^2}$

(자료 4.2)의 표준편차는 $\sigma = \sqrt{\sigma^2} = \sqrt{4} = 2$ 이다.

실습 4.3	『eStat』을 이용하여 (자료 4.2) 5명 표본 학생들의 퀴즈 성적에 대한 점그래프를 그리고 평균 및 표준편차를 구해보자.
풀이	 왼쪽의 QR을 이용해 『eStatH』 메뉴에서 '점그래프 - 평균/표 준편차'를 선택하면 <그림 4.7>과 같은 창이 나타난다. '자료 입력'에 학생들의 퀴즈성적 자료를 입력한다. (전자책에서 자료를 복사하여 붙여넣기를 해도 됨)
	점그래프 - 평균/표준편차 메뉴 [자료 입력] 6 8 7 4 10 정렬자료 4,6,7,8,10 자료수 n 5 최솟값 min 400 평균 μ 7.00 최댓값 max 1000 중앙값 m 7.00 범위 range 6.00 최빈값 mode 분산 σ ² 4.00 표준편차 σ 2.00 <-그림 4.7> 점그래프를 위한 퀴즈성적 자료 입력
	 자료를 입력하면 자료수, 최솟값, 최댓값, 평균, 중앙값 등이 계 산된다. [실행] 버튼을 클릭하면 <그림 4.8>과 같은 점그래프가 나타나고 평균, 중앙값, 표준편차, 그리고 평균 ± 표준편차 길이 가 표시된다. 그림 아래에 있는 시뮬레이션 창을 이용하여 마우스로 한 점을 이동시키면서 표준편차 길이의 변화를 살펴볼 수 있다. 표준편차 도 극단점에 영향을 받는다.
	α 2 4 3 3 10 12 14 μ-σ μ=7.00 μ+σ σ=2.00 μ=7.00
	+** 서플레이션 *** (마우스로 한 점을 이용)
	<그림 4.8> 평균 + 표준편차가 표시된 점그래프

실습 4.4	『eStat』을 이용하여 우리나라의 2월 서울의 일별 최저기온([실 습 3.2])을 조사한 (자료 3.2)에 대하여 점그래프를 그리고 평균 및 표준편차를 구해보자.
	(자료 3.2) 2021년 2월 서울의 일별 최저기온 (섭씨 도) (기상청) -2.3 -8.2 -9.4 -7.4 -4.4 4.3 -2.6 5.4 -6.1 -1.5 1.3 0.6 1.0 6.4 -5.2 -7.0 -10.4 -10.6 -7.1 5.5 4.7 0.4 -3.1 -3.0 0.7 0.5 4.3 3.2
풀이	• 왼쪽의 QR을 이용하여 나타나는『eStatH』 메뉴에서 '점그래 프 - 평균 / 표준편차'를 선택하면 <그림 4.9>와 같은 자료 입
	역창이 나타난다. 점그래프 - 평균/표준편차 [자료 입력] 23-82-94-74-44 43-26 54 61-15 13 06 10 64-52 -70-104-1] 정렬자료 -106-104-94-82-74-71-7-61-52-44-31-3-26-23-15.04.04 자료수 n 28 최숙값 min -1080 평균 μ -1.79 최댓값 max 6.40 중앙값 m -190 범위 range 17.00 최빈값 mode 4.3 분산 σ ² 26.11 표준편차 σ 5.11 -그림 4.9> 점그래프의 자료입력 상자 - 자료를 입력하면 자료수, 최숙값, 최댓값, 평균, 중앙값 등이 계산된다. [실행] 버튼을 클릭하면 <그림 4.10>과 같은 점그래 프가 나타나고 평균, 중앙값, 표준편차, 그리고 평균 ± 표준편 차 길이가 표시된다. - 그림 아래에 있는 시뮬레이션 창을 이용하여 마우스로 한 점을 이동시키면서 표준편차 길이의 변화를 살펴볼 수 있다. 표준편 차도 극단점에 영향을 받는다.
	고 ····································

가. 도수분포표에서 표준편차 구하기

☞ 생각열기	다음과 같이 한 중학 자.	교 학급의 학력고사	성적의 도수분포	L표가 주어졌다고 하
		[표 4.3] 중학교 흐 도수분	ነ력고사 성적의 포표	
		계급	도수(개)	
		아망~ 미만 60 ~ 70	2	
		70 ~ 80	10	
		80 ~ 90	15	
		90 ~ 100	3	
		합계	30	
탐구	이 자료들을 산포도로	서 표준편차를 어떻	렇게 구할까?	

- 앞 절에서 원 자료가 아니라 도수분포표가 주어졌을 때 평균을 중간값을 이용 해 근사적으로 구하였다. 표준편차도 유사한 방법으로 구한다.
- 먼저 각 계급의 중간값을 구한다. 그리고 각 계급에 도수만큼 중간값이 있다고 생각하고 이 근사 자료를 이용하여 평균을 구한다.

계급	중간값	도수(개)	근사 자료
~ ~ 70 60 ~ 70	65	2	65 65
70 ~ 80	75	5	70 70 70 70 70
80 ~ 90	85	10	85 85 85 85 85 85 85 85 85 85 85
90 ~ 100	95	3	95 95 95
합계		20	

[표 4.4] 중간값을 이용한 중학교 학력고사 성적의 근사 자료

• 즉 평균은 다음과 같다.

평균 =
$$\frac{65 \times 2 + 75 \times 5 + 85 \times 10 + 95 \times 3}{20}$$

= $\frac{1640}{20}$ = 82

• 분산과 표준편차도 유사한 방법으로 구한다.

분산 =
$$\frac{(65-82)^2 \times 2 + (75-82)^2 \times 5 + (85-82)^2 \times 10 + (95-82)^2 \times 3}{20} = \frac{1420}{20} = 71$$

표준편차 = $\sqrt{71} = 8.43$

• 『eStatH』의 '도수분포다각형 - 상대도수 비교'를 이용하면 도수분포표의 근 사적인 평균과 표준편차를 <그림 4.11>과 같이 구할 수 있다. 계급구간의 왼쪽 값과 도수1을 인력한 후 [실행] 버튼을 누르면 된다.

T	제목 : [
세로축	제목 : [상대	도=	÷)						
가로축	제목 : [
	2	ᅨ급				도수 1		도수 2	상대도수	= 1	상대도수
	60	≤	20	<	70.00		2		0	100	
	70	≤	~	<	80.00		5		0	250	
	80	≤	2	<	90.00		10		0	500	
	90	≤	~	<	100.00		3		0	150	
		≤	~	<							
		≤	~	< [
1		≤	~ .:	<							
		≤	~ :	<		[
[≤	~	<		[
					합계		20		1	000	
					평균	82.	00				
실행					표준편차	8.	43				

<그림 4.11> 도수분포표를 이용한 표준편차의 계산

4.3 산점도 - 상관계수

☞ 생각열기	한 중학교	남학생 7	'명의 신	!장과 :	체중을	조사하	였더니	다음괴	같다.	
	(자료 4.3) 한 중학교 학생 7명의 신장(cm)과 제중(kg)									
			1	2	3	4	5	6	7	
		신장	162	164	170	158	175	168	172	
		체중	54	60	64	52	65	60	67	
탐구	- 신장과 - 두 변령	체중 두 양의 상관관	변량의 관계를	상관곤 알아볼	ː계를 설 수 있는	날펴볼 = 측도	수 있는 가 있을	= 그래 ≧까?	프가 있	을까?

이와 같이 두 변량을 측정한 자료는 산점도를 이용하여 두 변량의 관련성 등 을 분석할 수 있다. 산점도는 한 변량의 값을 x축, 다른 변량의 값을 y축으로 하여 좌표평면위에 각각의 점을 표시한 것이다. 즉 (자료 4.2)를 순서쌍 (162, 54), (164, 60), ... (172, 67)로 <그림 4.12>와 같이 나타낸다.

<그림 4.12> 신장과 체중의 산점도

위의 그림을 보면 신장이 증가할수록 체중도 대개 증가함을 알 수 있다. 즉 산 점도를 이용하면 신장과 체중 변량 사이의 관계를 잘 알 수 있다. 두 변량 x, y 사이에 x의 값이 증가함에 따라 y의 값이 증가하거나 감소하는 경향이 있을 때 두 변량 x, y사이에 상관관계가 있다고 한다. 상관관계는 여러 가지 종류가 있다. 양의 상관관계 - 한 변량 x의 값이 증가함에 따리 y의 값이 대체적으로 증 가하는 경향이 있을 때, 두 변량 사이에 양의 상관관계가 있다고 한다. 아버 지의 키와 아들의 키는 대개 양의 상관관계를 갖는다. 만일 산점도의 점들 이 한 직선에 가깝게 모여 있으면 양의 상관관계가 강하다 하고, 흩어져 있 으면 양의 상관관계가 약하다고 한다.

<그림 4.13> 강한 양의 상관관계

<그림 4.14> 약한 양의 상관관계

: y = (0.02) + (0.66) $r = 0.64 r^2 = 0.41$

2) 음의 상관관계 - 한 변량 x의 값이 증가함에 따리 y의 값이 대체적으로 감 소하는 경향이 있을 때, 두 변량 사이에 음의 상관관계가 있다고 한다. 등산 을 하면 산의 높이와 온도와의 관계는 음의 상관을 갖는다. 만일 산점도의 점들이 한 직선에 가깝게 모여 있으면 음의 상관관계가 강하다 하고, 흩어 져 있으면 음의 상관관계가 약하다고 한다.

3) 상관관계 없음 - 한 변량 x의 값이 증가함에 따리 y의 값이 증가하거나 감
 소하는 경향이 분명하지 않을 때, 두 변량 사이에 상관관계가 없다고 한다.

<그림 4.17> 상관관계가 없는 경우

실습 4.5	『eStatH』를을 이용하여 (자료 4.3) 7명 학생들의 신장과 체중에 대한 산점도를 그려보자.									
풀이	 왼쪽의 QR을 이용해 『eStatH』 메뉴에서 '산점도 - 상관계수' 를 선택하면 <그림 4.18>과 같은 창이 나타난다. 'X자료 입력'에 학생들의 신장을, 'Y자료 입력'에 체중을 입력한 다. (전자책에서 자료를 복사하여 붙여넣기를 해도 됨) 									
	산점도 메뉴 X 자료 입력 162 164 170 158 175 168 172 Y 자료 입력 54 60 64 52 65 60 67 주 제목 중학생의 신장과 체중 세로축 제목 체중									
	자료수 n _x 7 n _y 7 평균 μ _x 167.00 μ _y 60.29 분산 σ_x^2 30.57 σ_y^2 27.06 공분산 σ_{xy} 27.00 표준편차 σ_x 5.53 σ_y 5.20 상관계수 ρ 0.94									
	 -그림 4.18> 산점도를 위한 신장 체중 자료 입력 자료를 입력하고 [실행] 버튼을 클릭하면 자료수, 평균, 분산, 표준편차 그리고 공분산 및 상관계수가 계산되고 <그림 4.12>와 같은 산점도가 나타난다. 다. 산점도 아래의 '회귀선'을 체크하면 신장과 체중의 관계를 설명 하는 회귀직선이 그려진다. 									

 한 변량에서 산포도의 측도로 분산이 이용되듯이 두 변량에서는 다음과 같은 공분산이 이용된다. n개의 x, y 자료를 (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)으로 표시하 고 평균을 (μ_x, μ_y)로 표시하였을 때 공분산 σ_{xy}는 다음과 같은 공식으로 나타 낼 수 있다.

공분산
$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)$$
 (n: 자료수)

공분산은 평면의 평균점 (μ_x, μ_y)에서 각각의 점들사이의 x축거리와 y축 거리를 곱한값들의 전체 평균을 의미한다. 따라서 평균점을 중심으로 오른쪽 위와 왼 쪽 아래에 점이 많으면 공분산은 양의 값을 가져 양의 상관관계를 알 수 있다. 평균점을 중심으로 왼쪽 위와 오른쪽 아래에 점이 많으면 공분산은 음의 값을 가져 음의 상관관계를 알 수 있다. 하지만 공분산은 자료의 단위에 따라 값이 많이 커질 수 있으므로 상관관계의 측도로는 다음과 같은 상관계수 ρ가 이용된 다.

상관계수
$$ho = rac{\sigma_{xy}}{\sigma_x \sigma_y}$$

- 상관계수는 공분산의 변형으로 -1에서 +1 사이의 값만 가질 수 있다. 상관계수 가 +1에 가까우면 두 변량이 강한 양의 상관관계 있다고 하고, -1에 가까우면 강한 음의 상관관계가 있다고 한다. 상관계수가 0에 가까우면 두 변량 사이에 는 상관관계가 없다.
- <그림 4.18>에서 보듯이 (자료 4.3)의 신장과 체중의 공분산은 27이고 상관계 수는 0.94로서 강한 양의 상관관계가 있음을 알 수 있다.
- 『eStatH』를 이용하면 여러 가지 상관계수에 대한 자료의 형태를 살펴볼 수 있다.

과제 4.5	다음은 10명 『eStatH』를 살펴보라.	학생 이동	들의 응하여	주당 산점	학습 <i> </i> 도를	시간괴 그리	·시험 고 어	성적(떤 상	에 대 \$관관	한 자 계가	료이다. 있는지
	(자료 4.4) 학생들의 주당 학습시간과 성적										
		1	2	3	4	5	6	7	8	9	10
	학습시간	10	25	15	16	20	5	18	21	12	20
	시험성적	75	95	82	85	97	65	87	88	76	90

상관관계가 강할 경우에는 변량들의 관계를 잘 설명할 수 있는 직선을 구하는
 데 이를 회귀선이라 한다. 회귀선에 관한 자세한 설명은 대학 통계에서 다룬다.

