Introduction to Statistics and Data Science using *eStat* Chapter 8 Testing Hypothesis for Two Populations

8.2 Testing hypothesis for two population variances

Jung Jin Lee Professor of Soongsil University, Korea Visiting Professor of ADA University, Azerbaijan

- Examples of comparing two population variances.
- When comparing two population means, if the sample was small, decision rule for testing hypothesis were different depending on whether two population variances were the same or different.
 - How can we test if two unknown population variances are the same?
- Quality of bolts used to assemble cars depends on strict specification for their diameter. The average diameter of these bolts is said to be the same for two companies.
 - How can you compare variances if smaller variances as superior?

Sample statistic to test two population variances.

$$\frac{\left(\frac{S_{1}^{2}}{\sigma_{1}^{2}}\right)}{\left(\frac{S_{2}^{2}}{\sigma_{2}^{2}}\right)} \sim F_{n_{1}-1,n_{2}-1}$$

Table 8.2.1 Testing hypothesis for two population variances - Two populations are normally distributed-

Type of
Hypothesis
 Decision Rule

 1)
$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$
 If $\frac{S_1^2}{S_2^2} > F_{n_1-1,n_2-1;\alpha}$, then reject H_0 , else accept H_0

 2) $H_0: \sigma_1^2 = \sigma_2^2$
 $H_1: \sigma_1^2 < \sigma_2^2$
 If $\frac{S_1^2}{S_2^2} < F_{n_1-1,n_2-1;1-\alpha}$, then reject H_0 , else accept H_0

 3) $H_0: \sigma_1^2 = \sigma_2^2$
 $H_1: \sigma_1^2 \neq \sigma_2^2$
 If $\frac{S_1^2}{S_2^2} < F_{n_1-1,n_2-1;1-\alpha/2}$ or $\frac{S_1^2}{S_2^2} > F_{n_1-1,n_2-1;\alpha/2}$, then reject H_0 , else accept H_0

[Example 8.2.1] A company that produces a bolt has two plants. One day, ten bolts produced in Plant 1 were sampled randomly and the variance of diameter was 0.11^2 . 12 bolts produced in Plant 2 were sampled randomly and the variance of diameter was 0.13^2 .

- Test whether variances of the bolt from two plants are the same or not with the 5% significance level.
- Check the test result using eStatU.
 <Answer>
- Hypothesis: $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$
- Decision rule is as follows:

'If
$$\frac{S_1^2}{S_2^2} < F_{n_1-1,n_2-1;1-\alpha/2}$$
 or $\frac{S_1^2}{S_2^2} > F_{n_1-1,n_2-1;\alpha/2}$, then reject H_0 '

- $\frac{S_1^2}{S_2^2} = \frac{0.11^2}{0.13^2} = 0.716, F_{n_1-1,n_2-1;1-\alpha/2} = F_{11,9;0.975} = 0.279, F_{11,9;0.025} = 3.912$
- Hence, H_0 can not be rejected that two variances are equal.

<Answer of Ex 8.2.1>

[Example 8.2.2] In Example 8.1.3, A sample of 10 male and 10 female of college graduates this year was taken and the monthly average income was examined as follows. (Unit 10000 KRW)

• Test if the variances of the two populations are equal or not Using eStat.

Male	272 255 278 282 296 312 356 296 302 312	
Female	276 280 369 285 303 317 290 250 313 307	

<Answer of Ex 8.2.2>

File Ex813IncomByGender.csv								
Analysis Var 2: Income			by Group					
(Selected data: Raw Data) (or Paired Var)								
SelectedVar V2 by V1,								
	Gender	Income	V3	V4				
1	М	272						
2	М	255						
3	М	278						
4	М	282						
5	М	296						
6	М	312						
7	М	356						
8	М	296						
9	М	302						
10	М	312						
11	F	276						
12	F	280						
13	F	369						
14	F	285						
15	F	303						
16	F	317						
17	F	290						
18	F	250						
19	F	313						
20	F	307						

(Group Gender) Income Mean - Standard Deviation Graph

<Answer of Ex 8.2.2>

Testing Hypothesis: Two Population Variances	Analysis Var	Income	Group Name	Gender	
Statistics	Observation	Mean	Std Dev	std err	Population Variance 95% Confidence Interval
1 (F)	10	299.000	31.742	10.038	(476.692, 3358.034)
2 (M)	10	296.100	27.739	8.772	(364.032, 2564.408)
Total	20	297.550	29.051	6. 4 96	(488.092, 1800.362)
Missing Observations	0				
Hypothesis					
$H_0: \sigma_1{}^2 = \sigma_2{}^2$		[TestStat]	F-value	p-value	σ_1^2 / σ_2^2 95% Confidence Interval
$H_1: \sigma_1^2 \neq \sigma_2^2$		S1 ² / S2 ²	1.309	0.6945	(0.325, 5.272)

Thank you