Introduction to Statistics and Data Science using *eStat*Chapter 8 Testing Hypothesis for Two Populations

8.1 Testing hypothesis for two population means - Paired sample -

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

8.1.2 Paired Samples

- In some cases, it is difficult to extract samples independently.
 - Typing education to increase the speed of typing
 - ⇒ if independent samples are selected, it is difficult to measure effectiveness of education because of individual differences
 - ⇒ for a typist who has sampled, if you measure the typing speed before the training and after the training, effect of typing education can be well understood.

8.1.2 Paired Comparison

Table 8.1.2 Data for a paired comparison

Sample of population 1 (x_{i1})	Sample of population 2 (x_{i2})	Difference $d_i = x_{i1} - x_{i2}$	
$egin{array}{c} x_{11} \ x_{21} \end{array}$	$egin{array}{c} x_{12} \ x_{22} \end{array}$	$d_1 = x_{11} - x_{12}$ $d_2 = x_{21} - x_{22}$	
x_{n1}	x_{n2}	$d_n = x_{n1} - x_{n2}$	
	Mean of d_i Variance d_i		

Table 8.1.3 Testing hypothesis of two population means (paired comparison)
- two populations are normal, and paired sample case

Type of Hypothesis	Decision Rule		
1) H_0 : $\mu_1 - \mu_2 = D_0$ H_1 : $\mu_1 - \mu_2 > D_0$	If $\dfrac{\overline{d}-D_o}{\dfrac{s_d}{\sqrt{n}}} > t_{n-1;\alpha}$, then reject H_0 , else accept H_0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	If $\dfrac{\overline{d}-D_o}{\dfrac{s_d}{\sqrt{n}}}$ $<$ $-t_{n-1;\alpha}$, then reject $H_{\!0}$, else accept $H_{\!0}$		
3) H_0 : $\mu_1 - \mu_2 = D_0$ H_1 : $\mu_1 - \mu_2 \neq D_0$	$\left rac{\overline{d} - D_o}{rac{s_d}{\sqrt{n}}} ight \ > \ t_{n-1;lpha/2}$, then reject H_0 , else accept H_0		

[Example 8.1.4] The following is the result of a special training to improve the typing speed of eight typists before and after the training.

- Test whether typing speed has increased or not at the 5% significance level. Assume that the speed of typing follows a normal distribution.
- Check the test result using [eStat] and [eStatU].

id	Typing speed before training (unit: words/min)	Typing speed after training (unit: words/min)
1	52	58
2	60	62
3	63	62
4	43	48
5	46	50
6	56	55
7	62	68
8	50	57

<Answer of Example 8.1.4>

Hypothesis

$$H_0: \mu_1 - \mu_2 = D_0$$

$$H_1: \mu_1 - \mu_2 < D_0$$

Decision Rule

If
$$\frac{(\overline{d} - D_0)}{\frac{S_d}{\sqrt{n}}} < -t_{n-1;\alpha}$$
 , then Reject H_0

$$\frac{(\overline{d} - D_0)}{\frac{S_d}{\sqrt{n}}} = \frac{-3.5}{\frac{3.16}{\sqrt{8}}} = -3.13$$

$$t_{n-1;\alpha} = t_{7;0.05} = -1.895$$

• Therefore H_0 is rejected Training increased typing speed

id	Typing speed before training (unit: words/min)	Typing speed after training (unit: words/min)	Difference d_i
1	52	58	-6
2	60	62	-2
3	63	62	1
4	43	48	-5
5	46	50	-4
6	56	55	1
7	62	68	-6
8	50	57	-7
			Mean $\overline{d}{=}{-}3.5$
			Standard deviation
			$s_d = 3.16$

<Answer of Ex 8.1.4>

Testing Hypothesis μ_1 , μ_2

Menu

[Hypothesis]
$$H_o: \mu_1 - \mu_2 = D$$
 0

$$\bigcirc$$
 $H_1: \mu_1 - \mu_2 \neq D$ \bigcirc $H_1: \mu_1 - \mu_2 > D$ \bigcirc $H_1: \mu_1 - \mu_2 < D$

Significance Level $\alpha = 9.5\%$ 1%

Sampling Type oindependent sample paired sample

[Sample Data] Input either sample data using BSV or sample statistics at the next boxes

Sample 1 52 60 63 43 46 56 62 50

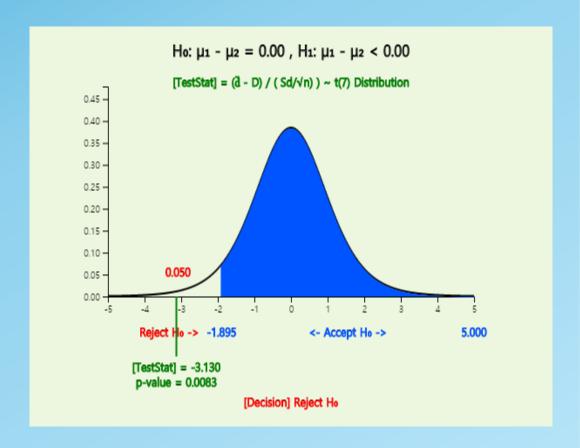
Sample 2 58 62 62 48 50 55 68 57

[Sample Statistics]

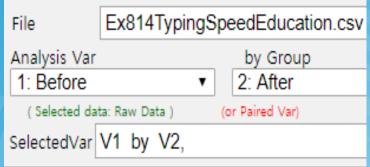
Sample Size
$$n_1 = 8$$
 $n_2 = 8$

Sample Mean
$$\bar{x}_1 = 54.00$$
 $\bar{x}_2 = 57.50$ $\bar{x}_d = 57.50$

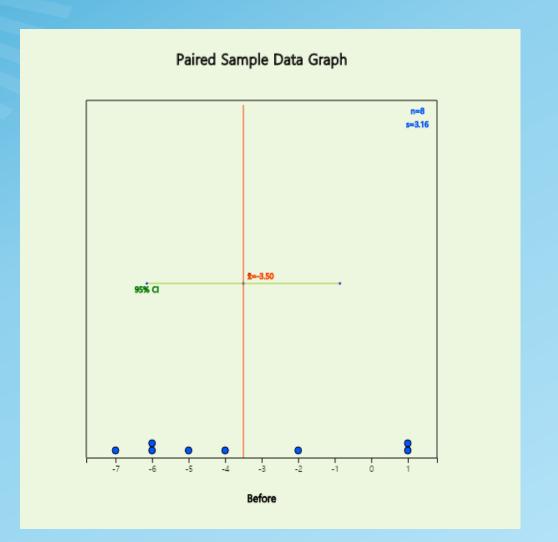
Sample Variance $s_1^2 =$

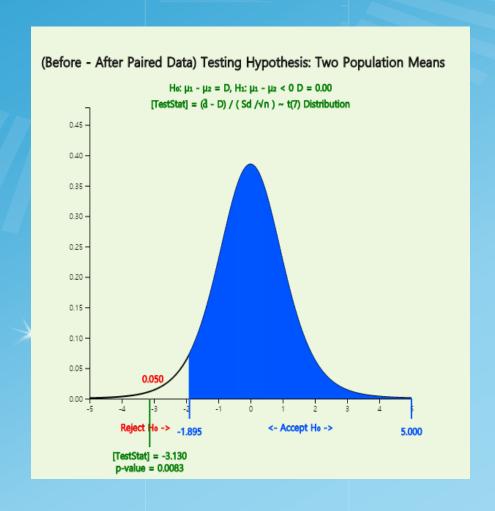

55.71

 $s_2^2 =$


-3.500

10.000


Execute


<Answer of Ex 8.1.4>

	Before	After	V3	V4	V5
1	52	58			
2	60	62			
3	63	62			
4	43	48			
5	46	50			
6	56	55			
7	62	68			
8	50	57			

<Answer of Ex 8.1.4>

Testing Hypothesis: Two Population Means	Analysis Var	(Before - After)			
Statistics	Observation	Mean	Std Dev	std err	Population Mean 95% Confidence Interval
	8	-3.500	3.162	1.118	(-6.144, -0.856)
Missing Observations	0				
Hypothesis	Variance Assumption	$\sigma_1^2 = \sigma_2^2$			
H ₀ : μ ₁ - μ ₂ = D	D	[TestStat]	t value	p-value	μ ₁ -μ ₂ 95% Confidence Interval
H ₁ : μ ₁ - μ ₂ < D	0.00	Difference of Sample Means	-3.130	0.0083	(-6.144, -0.856)

Thank you

2021년 1월 17일