Chapter 8

Unsupervised machine learning

Professor Jung Jin Lee Soongsil University, Korea New Uzbekistan University, Uzbekistan

Chapter 8 Unsupervised machine learning

8.1 Basic concepts of unsupervised learning and clustering8.2 Hierarchical clustering model

8.3 K-means clustering model

- Unsupervised learning classifies data whose group affiliation is unknown into homogeneous groups.
 => Clustering analysis
- Clustering analysis;
 - understanding the data structure,
 - identifying cluster characteristics
 - determining the relationships between clusters,
 - allowing for the performance of other analyses.

- Clustering analysis is based on the similarity and relationship between data
- The data in one cluster are similar, and the data in other clusters are different.
- The definition of clusters is not easy.
- Not clear how many clusters to divide into.

- Clustering models are divided into hierarchical and partitional clustering models.
- The hierarchical clustering model allows subclusters within a cluster
 - All data is put into one cluster, divided into subclusters, and then divided into subclusters again.
- The partitional clustering model divides the entire data without overlapping each other,
 - K-means clustering model.

- Clustering models are also divided into exclusive clustering, where one data belongs to one cluster, and inclusive clustering, where one data belongs to multiple clusters.
- The K-means clustering model is an exclusive clustering analysis, and the fuzzy clustering model and the mixed distribution clustering are inclusive clustering.
- Clustering models are also classified into prototype-based models, density-based models, and graph-based models.

- Factors for evaluating clustering models;
 - Clustering tendency for a specific data set
 - Number of accurate clusters
 - Comparison of characteristics of formed clusters

 G_i

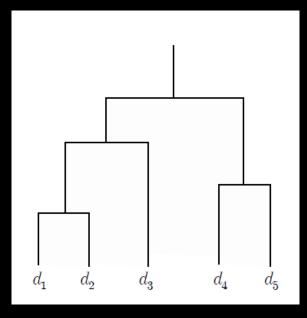
Evaluation measures for clustering;

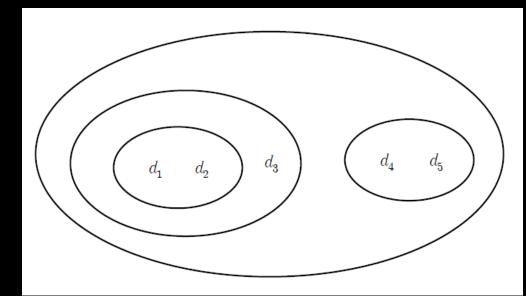
$$egin{aligned} ext{Cohesion}(G_i) &= \sum_{oldsymbol{x}, oldsymbol{y} \in G_i} d(oldsymbol{x}, oldsymbol{y}) \ ext{Separation}(G_i, G_j) &= \sum_{oldsymbol{x} \in G_i} \sum_{oldsymbol{x} \in G_j} d(oldsymbol{x}, oldsymbol{y}) \ ext{Cohesion of total model} &= \sum_{oldsymbol{x}} w_i imes (ext{Cohesion of cluster}) \end{aligned}$$

- Agglomerative hierarchical clustering;
 - Starts from one data, and groups the closest clusters in order.
 - Several variations depending on how the distance between clusters is defined.
- Divisive hierarchical clustering;
 - Considers all data as one cluster and divides them in order so that the final cluster becomes one data.
 - Several variations depending on which cluster is first divided and how it is divided.

- Resulting graphs of hierarchical clustering;
 - * Dendrogram

*Subset plot





Agglomerative hierarchical clustering algorithm

Step 1	Consider each data as one cluster and calculate the similarity matrix of all data.
Step 2	repeat
Step 3	Group the two closest clusters into one cluster.
Step 4	Obtain the similarity matrix between all clusters including the newly formed cluster.
Step 5	until (the number of clusters becomes one)

Single linkage or shortest distance

- If the data with the closest distance in the distance matrix D = {d_{ij}} U and V, the two data are first grouped to form a cluster (UV).
- The next step calculates the distance between the cluster (UV) and the remaining (n-2) other data or clusters.
- The single linkage distance between the cluster (UV) and cluster W;

 $d_{UV} = \min(d_{UW}, d_{VW})$

Single linkage or shortest distance

[Example 8.2.1] The five observed data for two variables x_1 and x_2 and the matrix of squared Euclid distances between these data are as follows. Create a hierarchical cluster using the single linkage method.

Table 8.2.1 Five observed data and the matrix of squared Euclid distances						
				Distance/th>		
Data	(x_1,x_2)	Α	В	C	D	E
A	(1, 5)	0				
В	(2, 4)	2	0			
С	(4, 6)	10	8	0		
D	(4, 3)	13	5	9	0	
E	(5, 3)	20	10	10	1	0

<Answer of Example 8.2.1>

d((DE), A) = min(d(D, A), d(E, A)) = min(13, 20) = 13d((DE), B) = min(d(D, B), d(E, B)) = min(5, 10) = 5d((DE), C) = min(d(D, C), d(E, C)) = min(9, 10) = 9

Table 8.2.2 Modified distance matrix with cluster	r(DE) using the single linkage
---	--------------------------------

	Distance/th>					
Cluster	A	В	С	(DE)		
Α	0					
В	2	0				
С	10	8	0			
(DE)	13	5	9	0		

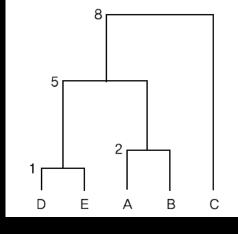
13

<Answer of Example 8.2.1>

 $\begin{array}{l} d((AB),C) = min(d(A,C),d(B,C)) = min(10,8) = 8 \\ d((AB),(DE)) = min(d(A,(DE)),d(B,(DE)) = min(13,5) = 5 \end{array}$

 Table 8.2.3 Modified distance matrix with cluster (AB) using the single linkage

	Distance/th>				
Cluster	(AB)	С	(DE)		
(AB)	0				
С	8	0			
(DE)	5	9	0		



 $d((AB)(DE),C)=\min(d((AB),C),d((DE),C))=\min(8,9)=8$

8.2 Hierarchical clustering modelComplete linkage or maximum distance

- If the data with the closest distance in the distance matrix D = {d_{ij}} U and V, the two data are first grouped to form a cluster (UV).
- The next step calculates the distance between the cluster (UV) and the remaining (n-2) other data or clusters.
- The single linkage distance between the cluster (UV) and cluster W;

 $d_{UV} = \max(d_{UW}, d_{VW})$

Complete linkage or maximum distance

[Example 8.2.1] The five observed data for two variables x_1 and x_2 and the matrix of squared Euclid distances between these data are as follows. Create a hierarchical cluster using the complete linkage

<u>. </u>							
Table 8.2.1 Five observed data and the matrix of squared Euclid distances							
				Distance/th>			
Data	(x_1, x_2)	Α	В	С	D	E	
A	(1, 5)	0					
В	(2, 4)	2	0				
С	(4, 6)	10	8	0			
D	(4, 3)	13	5	9	0		
E	(5, 3)	20	10	10	1	0	

<Answer of Example 8.2.2>

 $\begin{array}{l} d((DE),A) = max(d(D,A),d(E,A)) = max(13,20) = 20 \\ d((DE),B) = max(d(D,B),d(E,B)) = max(5,10) = 10 \\ d((DE),C) = max(d(D,C),d(E,C)) = max(9,10) = 10 \end{array}$

Table 8.2.5 Modified distance matrix with cluster (DE) using the complete linkage

		Distan	ce/th>	
Cluster	Α	В	С	(DE)
A	0			
В	2	0		
С	10	8	0	
(DE)	20	10	10	0

<Answer of Example 8.2.2>

d((AB), C) = max(d(A, C), d(B, C)) = max(10, 8) = 10d((AB), (DE)) = max(d(A, (DE)), d(B, (DE)) = max(20, 10) = 20

 Table 8.2.6 Modified distance matrix with cluster (AB) using the complete linkage

				10				
		Distance		10				
Cluster	(AB)	C	(DE)					
(AB)	0							
C	10	0		1			2	
(DE)	20	10	0	D	I E	C	I A	I B

d((AB), C(DE)) = max(d((AB), C), d((AB), (DE))) = max(10, 20) = 20

20

8.2 Hierarchical clustering modelAverage linkage

- If the data with the closest distance in the distance matrix D = {d_{ij}} U and V, the two data are first grouped to form a cluster (UV).
- The next step calculates the average distance between cluster (UV) and cluster W.

$$d_{(UV)W} = rac{\sum_{oldsymbol{x}_i \in (UV)} \sum_{oldsymbol{x}_j \in W} \ d(oldsymbol{x}_i, oldsymbol{x}_j)}{n_{(UV)} imes n_W}$$

Average linkage

[Example 8.2.3] The five observed data for two variables x_1 and x_2 and the matrix of squared Euclid distances between these data are as follows. Create a hierarchical cluster using the average linkage method.

	Table 8.2.1 Five observed data and the matrix of squared Euclid distances						
				Distance/th>			
Data	(x_1,x_2)	Α	В	C	D	E	
A	(1, 5)	0					
В	(2, 4)	2	0				
С	(4, 6)	10	8	0			
D	(4, 3)	13	5	9	0		
E	(5, 3)	20	10	10	1	0	

<Answer of Example 8.2.3>

$$d((DE), A) = \frac{d(D,A) + d(E,A)}{2 \times 1} = \frac{13 + 20}{2} = 16.5$$

$$d((DE), B) = \frac{d(D,B) + d(E,B)}{2 \times 1} = \frac{5 + 10}{2} = 7.5$$

$$d((DE), C) = \frac{d(D,C) + d(E,C)}{2 \times 1} = \frac{9 + 10}{2} = 9.5$$

Table 8.2.8 Modified distance matrix with cluster (DE) using the single linkage

	Distance/th>					
Cluster	Α	В	С	(DE)		
Α	0					
В	2	0				
C	10	8	0			
(DE)	16.5	7.5	9.5	0		

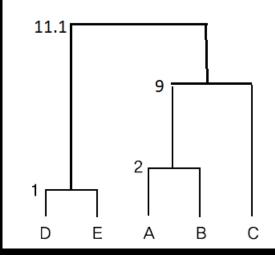
21

<Answer of Example 8.2.3>

$$d((AB), C) = rac{d(A,C)+d(B,C)}{2 imes 1} = rac{10+8}{2} = 9 \ d((AB), (DE)) = rac{d(A,D)+d(A,E)+d(B,D)+d(B,E)}{2 imes 2} = rac{13+20+5+10}{4} = 12$$

 Table 8.2.9 Modified distance matrix with cluster (AB) using the average linkage

	Distance/th>				
Cluster	(AB)	C	(DE)		
(AB)	0				
С	9	0			
(DE)	12	9.5	0		



8.2 Hierarchical clustering modelCentroid linkage

- If the data with the closest distance in the distance matrix D = {d_{ij}} U and V, the two data are first grouped to form a cluster (UV).
- The distance between two clusters is defined as the squared Euclid distance between the two centroids

 $d(Gi,G_j) = ||\boldsymbol{c}_i - \boldsymbol{c}_j||^2$

The center of the new cluster is the weighted average;

$$oldsymbol{c} = rac{n_i oldsymbol{c}_i + n_j oldsymbol{c}_j}{n_i + n_j}$$

Centroid linkage

[Example 8.2.4] The five observed data for two variables x_1 and x_2 and the matrix of squared Euclid distances between these data are as follows. Create a hierarchical cluster using the centroid linkage method.

Table 8.2.1 Five observed data and the matrix of squared Euclid distances							
				Distance/th>			
Data	(x_1,x_2)	Α	В	C	D	E	
A	(1, 5)	0					
В	(2, 4)	2	0				
С	(4, 6)	10	8	0			
D	(4, 3)	13	5	9	0		
E	(5, 3)	20	10	10	1	0	

<Answer of Example 8.2.4>

$$egin{aligned} d((DE),A) &= (4.5-1)^2 + (3-5)^2 = 16.25\ d((DE),B) &= (4.5-2)^2 + (3-4)^2 = 7.25\ d((DE),C) &= (4.5-4)^2 + (3-6)^2 = 9.25 \end{aligned}$$

Table 8.2.11 Modified distance matrix with cluster (DE) using the centroid linkage

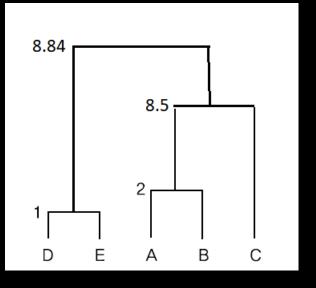
	Distance/th>			
Cluster	Α	В	С	(DE)
Α	0			
В	2	0		
C	10	8	0	
(DE)	16.25	7.25	9.25	0

<Answer of Example 8.2.4>

 $d((AB), C) = (1.5 - 4)^2 + (4.5 - 6)^2 = 8.5$ $d((AB), (DE)) = (1.5 - 4.5)^2 + (4.5 - 3)^2 = 11.25$

 Table 8.2.12 Modified distance matrix with cluster (AB) using the centroid linkage

-			
	Distance/th>		
Cluster	(AB)	C	(DE)
(AB)	0		
C	8.5	0	
(DE)	11.25	9.5	0



(AB)C becomes the next cluster and the center of the cluster

$$\frac{2 \times (1.5, \ 4.5) + 1 \times (4, \ 6)}{2 + 1} = (2.3, \ 5)$$

$$d((AB)C, (DE)) = (2.3 - 4.5)^2 + (5 - 3)^2$$
 = 8.84

8.2 Hierarchical clustering model
& Ward linkage

 Ward linkage measures the information loss caused by grouping data into a single cluster at each stage by the error sum of squares (ESS).

$$ESS_i = \sum_{j=1}^{n_i} \sum_{k=1}^m (x_{ijk} - \overline{x}_{ik})^2$$

$$ESS = \sum_{i=1}^{K} ESS_i = \sum_{i=1}^{K} \sum_{j=1}^{n_i} \sum_{k=1}^{m} (x_{ijk} - \overline{x}_{ik})^2$$

 Clusters are merged to create a new cluster so that the increment of ESS due to the merging is minimized.

$$d(G_i,G_j) = rac{||m{c}_i - m{c}_j||^2}{rac{1}{n_i} + rac{1}{n_j}}$$

8.2 Hierarchical clustering modelWard linkage

[Example 8.2.5] The five observed data for two variables x_1 and x_2 and the matrix of squared Euclid distances between these data are as follows. Create a hierarchical cluster using the Ward linkage method.

	Table 8.2.1 Five observed data and the matrix of squared Euclid distances					
		Distance/th>				
Data	(x_1,x_2)	Α	В	C	D	E
A	(1, 5)	0				
В	(2, 4)	2	0			
С	(4, 6)	10	8	0		
D	(4, 3)	13	5	9	0	
E	(5, 3)	20	10	10	1	o

<Answer of Example 8.2.5>

$$\begin{aligned} d((DE), A) &= \frac{(4.5-1)^2 + (3-5)^2)}{\frac{1}{2} + \frac{1}{1}} = 11.17\\ d((DE), B) &= \frac{(4.5-2)^2 + (3-4)^2)}{\frac{1}{2} + \frac{1}{1}} = 4.83\\ d((DE), C) &= \frac{(4.5-4)^2 + (3-6)^2)}{\frac{1}{2} + \frac{1}{1}} = 6.17 \end{aligned}$$

Table 8.2.14 Modified distance matrix with cluster (DE) using the Ward linkage

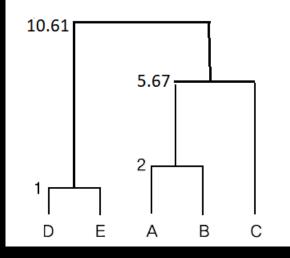
	Distance/th>			
Cluster	A	В	С	(DE)
A	0			
В	2	0		
C	10	8	0	
(DE)	11.17	4.83	6.17	0

<Answer of Example 8.2.5>

 $egin{aligned} d((AB),C) &= rac{(1.5-4)^2+(4.5-6)^2)}{rac{1}{2}+rac{1}{1}} = 5.67 \ d((AB),(DE)) &= rac{(1.5-4.5)^2+(4.5-3)^2)}{rac{1}{2}+rac{1}{1}} = 11.25 \end{aligned}$

Table 8.2.15 Modified distance matrix with cluster (AB) using the Ward linkage

	Distance/th>		
Cluster	(AB)	С	(DE)
(AB)	0		
C	5.67	0	
(DE)	11.25	6.17	0



(AB)C becomes the next cluster

$$\frac{2 \times (1.5, 4.5) + 1 \times (4, 6)}{2 + 1} = (2.3, 5)$$

$$d((AB)C, (DE)) = rac{(2.3-4.5)^2+(5-3)^2)}{rac{1}{3}+rac{1}{2}} = 10.61$$

- K-means clustering is for continuous data, and the mean and median can be used as the centers of the clusters,
- A similar concept can be applied to discrete data by defining the centroid of the discrete data.
- The K-means clustering determines the number of clusters
 K first and calculates the center of each cluster
- Classifies each data into a cluster with the closest cluster center and recalculates the center of each cluster
- The same method is repeated until there is no change in the cluster center.

K-means clustering algorithm

Step 1	Determine the number of clusters K you want.
Step 2	Select the initial center of each cluster.
Step 3	repeat
Step 4	Classify each data into the cluster with the closest cluster center.
Step 5	Recalculate the center of each cluster.
Step 6	until (there is little change in the cluster center

[Example 8.3.1] For the two variables x_1 and x_2 , four data were observed as follows. Find two clusters using the 2-means clustering algorithm with the squared Euclid distance between the data.

Table 8.3.1 Data for the 2-means clustering algorithm		
Data	(x_1, x_2)	
A	(3, 4)	
В	(-1, 2)	
С	(-2, -3)	
D	(1, -2)	

<Answer of Example 8.3.1>

Let the center of cluster 1 be data A=(3,4) and the center of cluster 2 be data C=(-2,-3). The distances from each data to the centers of the two clusters are as follows.

Table 8.3.2 Distance between data and the center of cluster			
Data	Cluster 1 Distance to center (3, 4)	Cluster 2 Distance to center (-2, -3)	
А	0	74	
В	20	26	
C	74	0	
D	40	10	

<Answer of Example 8.3.1>

If each data is classified by the nearest cluster center, data A and B are classified into cluster 1, data C and D are classified into cluster 2, and the center of the new cluster 1 by the average is (1,3), and the center of cluster 2 is (-0.5,-2.5). The distances from each data to the centers of the two new clusters are as follows.

Table 8.3.3 Modified distance between data and the center of cluster			
Data	Cluster 1 Distance to center (1, 3)	Cluster 2 Distance to center (-0.5, -2.5)	
A	5	54.5	
В	5	20.5	
C	45	2.5	
D	25	2.5	

8.3 K-means clustering modelTheoretical background of K-means clustering

 A measure of clustering performance can be defined as the sum of distances from all data to each center.

$$(ext{Performance measure of clustering}) = \sum_{i=1}^K \; \sum_{oldsymbol{x} \in G_i} \; d(oldsymbol{c}_i, oldsymbol{x})$$

 The performance measure of a clustering is the within sum of squares (WSS) in the case of the Euclidean distance.

$$ext{WSS} = \sum_{i=1}^K \; \sum_{x \in G_i} \; (c_i - x)^2$$

8.3 K-means clustering modelTheoretical background of K-means clustering

 The solution that minimizes the within sum of squares is as follows.

$$rac{\partial}{\partial c_i} \mathrm{SSE} = \sum_{x \in G_i} \; 2(c_i - x) = 0$$

$$c_i = rac{1}{n_i} \; \sum_{x \in G_i} \; x$$

 The solution that minimizes the within sum of squares is the mean of clusters.

Summary

- Basic concept of clustering:
 - Classify data whose group is unknown into homogeneous groups.
 - Cohesion and separation are clustering measures.
- Hierarchical clustering:
 - Agglomerative clustering starts from one data and groups the closest clusters.
 - Single, complete, average, centroid, Ward linkage.
- K-means clustering:
 - Determines the number of clusters K and selects the initial center of each cluster.
 - > Each data is classified into a cluster with the closest cluster center.
 - > The center of each cluster is recalculated.

Thank you !!!