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CHAPTER OBJECTIVES

We introduce the following in this chapter.

• What is the sampling distribution of sample means is, and how can we we estimate a population mean
using the sampling distribution in section 5.1?

• What a testing hypothesis is and the testing hypothesis for a single population mean in section 5.2.
• Testing hypothesis for comparing two population means in section 5.3.
• Testing hypothesis for comparing several populations means using analysis of variance in section 5.4.
• Correlation and regression analysis to analyze the relation between several continuous variables in section

5.5.

5.1 Sampling distribution and estimation
A population is usually very massive, and it is difficult and costly to investigate the entire population.

Therefore, characteristic values of the population, such as a population mean and variance called population
parameters, are usually estimated using a set of samples. Characteristic values of samples, such as a sample
mean and sample variance called sample statistic. The distribution of all possible values of the sample
statistic is called a sampling distribution. The sampling distribution identifies a relationship between the
sample statistic and population parameter, making it possible to estimate and to test a population parameter.
Section 5.1.1 discusses the sampling distribution of all possible sample means, and section 5.1.2 discusses
how to estimate the population mean using the sampling distribution.

5.1.1 Sampling distribution of sample means

A population mean μ is called a parameter of a population, one of the characteristic values of the
population. We collect samples of size n and calculate a sample mean to estimate the population mean. We
hope this sample mean can estimate the population mean correctly, but there are many ways to collect samples
of size n, and therefore, so many possible sample means. We hope this sample mean can estimate the
population mean correctly, but there are many ways to collect samples of size n, and therefore, so many
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possible sample means. The distribution of all possible sample means is called a sampling distribution of all
possible sample means. Since the sample mean is a random variable that can have many different values, it is
usually denoted with a capital letter such as  and called an estimator of the population parameter μ. An
observed sample mean, marked  with a lowercase letter, is called an estimate of μ.

If a population is a normal distribution , the distribution of all possible sample means is exactly a
normal distribution . If a population is not a normal distribution but the sample size is large enough,
the distribution of all possible sample means is approximately a normal distribution such as . We
call this the central limit theorem, which is a key theory underlying modern statistics. Theoretical proof of
this theorem is beyond the scope of this book; please refer to any book on mathematical statistics.

Central limit theorem

If a population has an infinite elements with a mean μ and variance , then, if the sample size is large
enough, the distribution of all possible sample means is an approximately normal distribution .
We can summarize specifically the central limit theorem as follows.

1) The average of all possible sample means, , is equal to the population mean μ.
(i.e.,  )

2) The variance of all possible sample means, , is the population variance divided by .
(i.e.,  )

3) The distribution of all possible sample means is approximately a normal distribution.

The above facts can be briefly written as .

The following simulation using 『 eStatU 』  shows that when a population is a normal distribution, the
distribution of all possible sample means is approximately normal, but variances become smaller as the
sample size increases.

[Central Limit Theorem]
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  Dist of Sample Means

N(0,1) Population (N=10000)N(0,1) Population (N=10000)
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Population :  N(0,1) Exponential(0.3) Uniform(0,1)
Execute    Sample Size n1 = 5    n2 = 10    n3 = 20

Graph Save
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<Figure 5.1.1> shows a simulation using 『eStatU』  in case a population is skewed from its mean. The
distribution of all possible sample means is closer to normal as the sample size increases.

<Figure 5.1.1> 『eStatU』 Simulation of the central limit theorem

5.1.2 Estimation of a population mean

When a sample survey is conducted, only one set of samples, usually smaller than the population size, is
selected from a population to estimate a characteristic value of the population, such as the population mean.
We typically consider the sample mean of the selected samples to estimate the population mean. Can this
sample mean can estimate the population mean well, even if the sample mean is only calculated from one set
of small samples? This question is fundamental in estimating the population parameter that everyone can
think about at least once. The sampling distribution of all possible sample means answers this question.
Whatever the population distribution is, if the sample size is large enough, all possible sample means are
distributed around the population mean in the form of a normal distribution by the central limit theorem.
Therefore, the sample mean obtained from one set of samples is usually close to the population mean. Even in
the worst case, the difference between the population mean and sample mean, known as an error, is not so
significant, and it is possible to estimate the population mean using the sample mean. The larger the sample
size, the more sample means are concentrated around the population mean based on the central limit theorem
and hence, we can reduce the error of the estimation.

The value of an observed sample mean is called a point estimate of the population mean. In general, the
sample statistic used to estimate a population parameter must have good characteristics to be accurate. The
sample mean has all the good characteristics to estimate the population mean, and the sample variance also
has all the good characteristics to estimate the population variance.
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In contrast to the point estimate for a population mean, estimating the population mean using an interval is
called an interval estimation. If a population follows a normal distribution with the mean μ and variance ,
the distribution of all possible sample means follows a normal distribution with the mean μ and variance ,
so the probability that one sample mean will be included in the interval  is

 as follows.

We can rewrite this formula as follows.

Assuming σ is known, the meaning of the above formula is that 95% of intervals obtained by applying the
formula  for all possible sample means include the population mean. The
formula of this interval is referred to as the 100(1- )% confidence interval of the population mean.

100(1-α)% here is called a confidence level, which refers to the probability of intervals that will include the
population mean among all possible intervals calculated by the confidence interval formula. Usually, we use
0.01 or 0.05 for α.  is the upper α percentile of the standard normal distribution. In other words, if  is the
random variable that follows the standard normal distribution, the probability that  is greater than  is α,
i.e.,

For example,  = 1.96,  = 1.645,  = 2.326, and  = 2.575.

The following simulation shows the 95% confidence intervals for the population mean by extracting 100
sets of samples with the sample size  = 20 from a population of 10,000 numbers which follow the standard
normal distribution N(0,1). In this case, 96 of the 100 confidence intervals contain the population mean 0.
This result might be different on your computer because the program uses a random number generator, which
depends on the computer. Whenever we repeat these experiments, the result may also vary slightly.

[Confidence Interval Simulation]
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  Confidence Interval Simulation

Population ~ N(0,1) (N=10000)Population ~ N(0,1) (N=10000)

-4 -3 -2 -1 0 1 2 3 4

Execute    Sample Size n = 20      repetition r = 10
Graph Save    Confidence Level    0.90    0.95    0.99
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Example 5.1.1 The average monthly starting salary of college graduates was 275 (unit: 10,000 KRW)
after a simple random sampling of 100 this year. Assume that the starting salary for all college
graduates follows a normal distribution with a standard deviation of 5.

1) What is the point estimate of the average monthly starting salary of all college graduates?
2) Estimate a 95% confidence interval of the average monthly starting salary of college graduates.
3) Estimate a 99% confidence interval of the average monthly starting salary of college graduates.

Compare the width of this interval to the 95% confidence interval.
4) If the sample size is increased to 400 and its average is the same, estimate a 95% confidence interval

of the average monthly starting salary for all college graduates. Compare the width of the interval to
question 2).

Answer

1) Point estimation of the average monthly starting salary is the sample mean which is 275 (unit: 10,000
KRW).

2) Since the 95％ confidence interval implies α = 0.05, z value is as follows.

Therefore, the 95％ confidence interval is as follows.

3) Since the 99％ confidence interval implies α = 0.01, z value is as follows.

Hence, the 99％ confidence interval is as follows.

Therefore, if the confidence level is increasing, the width of the confidence interval becomes wider.

4) If the sample size is 400, the 95％ confidence interval is as follows.

Therefore, as the sample size increases, the width of the confidence interval becomes narrower,
which is more accurate.

Practice 5.1.1 A large manufacturer's quality manager wants to know raw materials' average weight.
Twenty-five samples were collected by simple random sampling, and their sample mean was 60 kg.
Assume the population standard deviation is 5 kg. Use 『eStatU』 to answer the following.

1) What is a point estimation of the population mean weight of raw materials?
2) Estimate a 95% confidence interval of the population mean weight of raw materials.
3) Estimate a 99% confidence interval of the population mean weight of raw materials. Compare the

width of this interval to the 95% confidence interval.
4) If the sample size is increased to 100 and its average is the same, estimate a 95% confidence interval

of the population mean weight of raw materials. Compare the width of the interval to question 2).

Interval estimation of a population mean – Unknown population variance

One problem in estimating the unknown population mean using the confidence interval formula in the
previous section is that the population variance may be unknown. If the sample size is large enough, a

zα/2 = z0.05/2 = 1.96
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confidence interval of the population mean can be obtained approximately using the sample variance instead
of the population variance in the confidence interval formula. However, if the sample size is small and the
sample variance is used, we should use a confidence interval based on the  distribution. The  distribution
was studied by a statistician W. S. Gosset, who worked for a brewer in Ireland and published his study result
in 1907 under the alias Student. So  distribution is often referred to as Student's  distribution. The 
distribution is not just a single distribution, but it is a family of distributions with a parameter called a degree
of freedom, 1,2, ... , 30, ... and denoted as 

The shape of the  distribution is symmetrical about zero (y axis), similar to the standard normal
distribution, but it has a tail that is flat and longer than the standard normal distribution. <Figure 5.1.2> shows
the standard normal distribution N(0,1), and  distribution with 3 degrees of freedom simultaneously using the
 distribution module of 『eStatU』.

<Figure 5.1.2> Comparison of  and N(0,1)

The  distribution is closer to the standard normal distribution as degrees of freedom increase above 100,
which is why a confidence interval can be obtained approximately using the standard normal distribution if
the sample size is greater than 100. Denote  as the 100 α% percentile from the right tail of the 
distribution with  degrees of freedom. For example,  is the 5% percentile of the  distribution from the
right tail and its value is 1.895 as <Figure 5.1.3>. In the standard normal distribution, this value was 1.645.
Since the  distribution is symmetrical, . To find a percentile value from the right tail of the 
distribution using 『eStatU』, click on '  distribution' in the main menu of 『eStatU』 and then set the degree of
freedom (df) to 7, and set the probability value in the sixth option below the  distribution graph to 0.05, then

 = 1.895 will appear.
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  t Distribution    df = 7  1  100        N(0,1)

                        After typing number, click [Execute] or [Enter]
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 P( t   ≤   -1.812  ) = 0.0500 Percentile Table

 P(                           t   ≥   2.228  ) = 0.0500

Percentile  P( -2.228    ≤   t   ≤   2.228  ) = 0.9500

 P( t   ≤   1.895  ) = 0.95

 P(                           t   ≥   1.895  ) = 0.0500
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<Figure 5.1.3> The 5% percentile of the  distribution from the right tail

Assume that a population follows a normal distribution, and consider an interval estimation of the
population mean in case of the unknown population variance. If  is a random sample of size 

from the population, then it can be shown that the distribution of , where σ is replaced with S, is the 

distribution with  degrees of freedom.

Hence, the probability of the following interval is (1 - α).

The above formula can be summarized as the confidence interval for the population mean when the
population variance is unknown.

where  is the sample size and  is the sample standard deviation.

Example 5.1.2 Suppose we do not know the population variance in Example 4.4.2. If the sample size is
25 and the sample standard deviation is 5 (unit: 10,000 KRW), estimate the mean of the starting salary
of college graduates at the 95% confidence level.

Answer

Since we do not know the population variance, we should use the  distribution for interval estimation
of the population mean. Since , the 95% confidence
interval of the population mean is as follows.

Note that the smaller the sample size, the wider the interval width.

Example 5.1.3 The following data shows a simple random sampling of 10 new male students' heights in
a college this year. Use 『eStatU 』  to make a 95% confidence interval of the height of the first-year
college students.

171 172 185 169 175 177 174 179 168 173

Answer

Click [Estimation : μ Confidence Interval] on the menu of 『eStatU』 and enter data at the [Sample Data]
box. Then the confidence intervals [170.68, 177.92] are calculated using the  distribution. In this
『eStatU』 module, confidence intervals can also be obtained by entering the sample sizes, sample mean,
and sample variance without entering data.

[Estimation : μ Confidence Interval]
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  Estimation : μ Confidence Interval

[Sample Data]  Input either sample data using BSV or sample statistics at the next boxes
   171,172,185,169,175,177,174,179,168,173

[Sample Statistics]
Sample Size n = 10 (>1)
Sample Mean x̄ = 174.30

Sample Variance s2 = 25.57

[Confidence Level]
      1 - α      95%  99%
[Sampling Distribution]    t Distribution Normal Distribution   σ2 = 

Execute      Erase Data
[Confidence Interval]

tn-1 ; α/2 = s / √ n  =
x̄ ± tn-1 ; α/2    (s / √ n) ⇔ [    ,  ]

  n = 10  1  200    1-α = 0.95  0.60  0.99

Graph Save
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In this module of 『eStatU』, a simulation experiment to investigate the size of the confidence interval
can be done by changing the sample size  and the confidence level 1 - α. If you increase , the
interval size becomes narrower. If you increase 1 - α, the interval size becomes wider.

Practice 5.1.2 In [Practice 5.1.1], suppose you do not know the population standard deviation, and the
sample standard deviation is 5 kg. Answer the same questions in [Practice 5.1.1] using 『eStatU』.

5.2 Testing hypothesis for a population mean
Examples of testing hypotheses for a population mean are as follows.

- The weight of a cookie bag is indicated as 200g. Would there be enough cookies to meet the indicated
weight?

- At a light bulb factory, a newly developed light bulb advertises a longer bulb life than the past one. Is this
propaganda reliable?

- Immediately after completing this year's academic test, students said there would be a 5-point increase in
the average English score, which is higher than last year. How can you investigate if this is true?

The testing hypothesis is an answer to the above questions (hypothesis). The testing hypothesis is a
statistical decision-making method using samples, which is used to compare two hypotheses about the
population parameter. This section discusses the test of the population mean, which is frequently used in
applications. The following example explains the theory of the testing hypothesis about a single population
mean.

Example 5.2.1 At a light bulb factory, the average life expectancy of a light bulb made by a
conventional production method is known to be 1500 hours, and the standard deviation is 200 hours.
Recently, the company has been trying to introduce a new production method, with an average life
expectancy of 1600 hours for light bulbs. Thirty samples were taken by simple random sampling from
the new type of light bulbs to confirm this argument, and the sample mean was  = 1555 hours. Can you
tell me that the new light bulb has an average life of 1600 hours?

Answer

A statistical approach to the question of this issue is first to make two assumptions about the different
arguments for the population mean μ . Namely,

 is called a null hypothesis and  is an alternative hypothesis. In most cases, the null hypothesis is
defined as an ‘existing known fact’ and the alternative hypothesis is defined as ‘new facts or changes in
current beliefs’. So when choosing between two hypotheses, the basic idea of testing a hypothesis is
'unless there is a significant reason, we accept the null hypothesis (current fact) without choosing the
alternative hypothesis (the fact of the matter). This idea of testing a hypothesis is referred to as
‘conservative decision making’.

A common sense for choosing between two hypotheses is 'which population mean of two hypotheses is
closer in the distance to the sample mean'. Based on this common sense, which uses the concept of
distance, the sample mean of 1555 is closer to , so we choose the alternative hypothesis.

n n

x–

H0 : μ = 1500

H1 : μ = 1600

H0 H1

H1 : μ = 1600
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However, a statistical testing hypothesis makes a decision using the sampling distribution of  to select
a critical value  and to make a decision rule as follows.

The area of { } is called an acceptance region of  and the area { } is called a rejection
region of  (<Figure 5.2.1>).

<Figure 5.2.1> Acceptance and rejection region of 

If this decision rule chooses a hypothesis, there are always two possible errors. One is a Type 1 Error
which accepts  when  is true, the other is a Type 2 Error which accept  when  is true. We
can summarize these errors as in Table 5.2.1.

Table 5.2.1 Two types of errors in testing hypothesis

Actual
 is true

Actual
 is true

Decision :  is true Correct Type 2 Error

Decision :  is true Type 1 Error Correct

If you try to reduce one type of error when the sample size is fixed, the other type of error will
increase. That is why we came up with a conservative decision-making method that defines the null
hypothesis  as 'past or present facts' and 'accept the null hypothesis unless there is significant
evidence for the alternative hypothesis.' In this conservative way, we try to reduce the type 1 error as
much as possible that selects  when  is true, which would be more risky than the type 2 error. The
testing hypothesis determines the tolerance for the probability of the type 1 error, usually 5% or 1% for
rigorous tests, and uses the selection criteria that satisfy this limitation. The tolerance for the
probability that this type 1 error will occur is called the significance level and denoted as α. The
probability of the type 2 error is denoted as β.

If the significance level is established, the decision rule for the two hypotheses can be tested using the
sampling distribution of all possible sample means. <Figure 5.2.2> shows two population distributions of
two hypotheses and their sampling distributions of all possible sample means in each hypothesis.

X
–

C

 ‘If X is smaller than C, then the null hypothesis H0 will be chosen, else reject H0’
–

X ≤ C
–

H0 X > C
–

H0

H0

H1 H0 H0 H1

H0 H1

H0

H1

H0

H1 H0
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<Figure 5.2.2> Testing Hypothesis

The sampling distribution of all possible sample means, which corresponds to the population of the null
hypothesis  : μ = 1500, is approximately normal  by the central limit theorem. The
sampling distribution of all possible sample means, which corresponds to the population of the
alternative hypothesis  : μ = 1600, is approximately normal . The population standard
deviation for each population is assumed to be 200 from historical data. Then, the decision rule
becomes as follows.

In Figure 5.2.2, the shaded area represents the probability of the type 1 error. If we set the significance
level, which is the tolerance level of the type 1 error, is 5%, i.e., ,  can be calculated
by finding the percentile of the normal distribution  as follows.

Therefore, the decision rule can be written as follows.

In this problem, the observed sample mean of the random variable  is = 1555 and  is accepted. In
other words, the hypothesis of  : μ = 1500 is judged to be correct, which contradicts the result of
common sense criteria that  = 1555 is closer to  : μ = 1600 than  : μ = 1500. We can interpret that
the sample mean of 1555 is insufficient evidence to reject the null hypothesis using a conservative
decision-making method.

The above decision rule is often written as follows, emphasizing that it results from a conservative
decision-making method.

In addition, this decision rule can be written for calculation purposes as follows.

In this case, since  = 1555,  = 1.506, and it is less than 1.645. Therefore, we accept .

Since the testing hypothesis by the conservative decision-making is only based on the probability of the
type 1 error as seen in [Example 5.2.1], even if the alternative hypotheses is , we will have the
same decision rule. Generally, there are three types of alternative hypotheses in the testing hypothesis for the
population mean as follows.

1) 2) 3) 

H0 N(1500, 2002)

H1 N(1600, 2002)

‘If X ≤ C, then accept H0, else accept H1 (i.e. reject H0 )’
–

P(X ≤ C) = 0.95
–

C
N(1500, 2002

30 )

1500 + 1.645 200
√30

= 1560.06

‘If X ≤ 1560.06, then accept H0, else reject H0 (accept H1 ).’
–

X
–

x–H0

H0

x–H1 H0

‘If X ≤ 1560.06, then do not reject H0, else reject H0.’
–

‘If  X−1500
200
√30

 ≤ 1.645, then accept H0 , else reject H0.’
–

x–1555−1500
200
√30

H0

H1 : μ > 1500

H1 : μ > μ0 H1 : μ < μ0 H1 : μ ≠ μ0
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Since 1) has the rejection region on the right side of the sampling distribution of all possible sample means
under the null hypothesis, it is called a right-sided test. Since 2) has the rejection region on the left side of the
sampling distribution, it is called a left-sided test. Since 3) has rejection regions on both sides of the sampling
distribution, it is called a two-sided test.

In [Example 5.2.1], if the sample mean is either 1555 or 1540, we cannot reject the null hypothesis, but
the degrees of evidence that the null hypothesis is not rejected are different. The degree of evidence that the
null hypothesis is not rejected is measured by calculating the probability of the type 1 error when the observed
sample mean value is considered as the critical value for decision, which is called the -value. That is, the -
value indicates where the observed sample mean is located among all possible sample means by considering
the location of the alternative hypothesis. In [Example 5.2.1], the -value for  = 1540 is the probability of
sample means which is greater than  = 1540 using  as follows.

The higher the -value, the stronger the reason for not being rejected. If  is rejected, the smaller the -
value, the stronger the grounds for rejection. Therefore, if the -value is less than the significance level the
analyst decided, then  is rejected because it means that the sample mean is in the rejection region.
Statistical packages provide this -value. The decision rule using -value is as follows.

'If -value < α, then  is rejected, else  is accepted.'

If the population standard deviation, σ, is unknown and the population follows a normal distribution, the
test statistic

is a  distribution with  degrees of freedom. If the population standard deviation is unknown, the
decision rule for each type of three alternative hypothesis are summarized in Table 5.2.2 where α is the
significance level.

Table 5.2.2 Testing hypothesis for a population mean - unknown σ case

Type of Hypothesis Decision Rule

1) If , then reject 

2) If , then reject 

3) If , then reject 

Note: Assume that the population is a normal distribution.
The  of 1) can be written as  , 2) as 

Example 5.2.2 The weight of a bag of cookies is supposed to be 250 grams. Suppose the weight of all
bags of cookies follows a normal distribution. In the survey of 16 random samples of bags, the sample
mean was 253 grams, and the sample standard deviation was 10 grams. Test the hypothesis whether the
weight of the bag of cookies is 250g or larger using α = 1％ and find the -value. Use 『eStatU』 to test
the hypothesis above.

Answer

p p

p X
–

X
–

N(1500, 2002

30 )

p-value = P(X > 1540) = P(
X − 1500

200
√30

) = 0.0660
–
–

p H0 p

p

H0

p p

p H0 H0

X − μ0

S
√n

–

t (n − 1)

H0 : μ = μ0

H1 : μ > μ0

X−μ0
S

√n

> tn−1: α

–
H0

H0 : μ = μ0

H1 : μ < μ0

X−μ0
S

√n

< −tn−1: α

–

H0

H0 : μ = μ0

H1 : μ ≠ μ0

X−μ0
S

√n

> tn−1; α/2∣–∣ H0

H0 H0 : μ ≤ μ0 H0 : μ ≥ μ0

p
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Since the population standard deviation is unknown and the sample size is small, the decision rule is as
follows.

Since the value of test statistic is , and  , we accept . Note that the

decision rule can be written as follows.

In 『eStatU』  menu, select [Testing Hypothesis μ], enter 250 at the box on [Hypothesis] and select the
alternative hypotheses as the right test. Check [Test Type] as t test and enter &alpha = 0.01. At the
[Sample Statistics], enter sample size 16, sample mean 253, and sample variance . If you
click the [Execute] button, the confidence Interval for μ is calculated, and the testing result will appear
as in <Figure 5.2.3>.

<Figure 5.2.3> Testing hypothesis for μ with  distribution using 『eStatU』

Since the -value is the probability that  is greater than the test statistics 1.200, the -value is 0.124
using the module of  distribution in 『eStatU』.

[Testing Hypothesis μ]

'If 
X − μ0

S

√n

> tn−1: α,  then reject H0 else accept H ′
0

'If 
253 − 250

10
√16

> t16: 0.01,  then reject H0 else accept H ′
0

–

253−250
10

√16

= 1.2 t15: 0.01 = 2.602 H0

'If X > 250 + 2.602 10
√16

,  then reject H0 else accept H ′
0

–

102 = 100

t

p t15 p
t
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  Testing Hypothesis μ

[Hypothesis]    Ho : μ = μo   250

    H1 : μ ≠ μo     H1 : μ > μo     H1 : μ < μo
[Test Type]    t test   Z test   σ2 = 
      Significance Level   α = 0.01   (0 < α < 1)
[Sample Data]  Input either sample data using BSV or sample statistics at the next boxes
   
[Sample Statistics]

Sample Size n = 16 (>1)
Sample Mean x̄ = 253

Sample Variance s2 = 100

[Confidence Interval]       tn-1; α/2 = 

x̄ ± tn-1 ; α/2   (s / √ n ) ⇔ [    ,  ]

Execute        α = 0.05   0  1    Erase Data

Graph Save
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Practice 5.2.1 The following data are weights of the 7 employees randomly selected who are working in
the shipping department of a wholesale food company.

154, 186, 159, 174, 183, 163, 181 (unit pound)
Ex ⇨ DataScience ⇨ Weight.csv.

Based on this data, is the average weight of employees working in the shipping department 160 or
greater than 160? Use the significance level of 5%.

5.3 Testing hypothesis for two populations means
When samples are selected independently from two populations, an estimator for the difference of two

population means, , is the difference of two sample means, . The sampling distribution of all
possible sample means differences is approximately a normal distribution with the mean  and
variance  if both sample sizes are large enough. Since the population variances  and  are usually
unknown, sample variances,  and , are used. If the two populations follow normal distributions and their
variances can be assumed to be the same, we can show that the following sample statistic for the sample
means difference follows -distribution with  degrees of freedom.

 is an estimator of the population variance called as a pooled variance which is an weighted average of two
sample variances  and  using the sample sizes as weights when population variances are assumed to be
the same.

Assume that two populations follow normal distributions as , and . Consider the interval
estimation of the population mean difference when you do not know the population variances, but they can be
assumed to be the same. Using the sampling distribution of the sample mean differences described above, the
100(1 - α)% confidence interval for the population mean difference when the population variances are
unknown can be shown as follows.

μ1 − μ2 x1 − x2
––

μ1 − μ2

σ2
1

n1
+ σ2

2

n2
σ2

1 σ2
2

S 2
1 S 2

2

t n1 + n2 − 2

(X1 − X2)

√ S 2
p

n1
+

S 2
p

n2

where S 2
p =

(n1 − 1)S 2
1 + (n2 − 1)S 2

2

n1 + n2 − 2

––

s2
p

s2
1 s2

2

N(μ1,σ2
1) N(μ1,σ2

1)

(X1 − X2) − tn1+n2−2: α/2
√ S 2

p

n1
+

S 2
p

n2
, (X1 − X2) + tn1+n2−2: α/2

√ S 2
p

n1
+

S 2
p

n2
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where  and  are the sample size,  and  are sample means of each population.  is an estimator of
the population variance, called the pooled variance.

A comparison of two populations means,  and . is possible by testing the hypothesis that the
difference in the population means is equal to zero or not. There are many examples comparing the means of
two populations as follows.

- Is there a difference between the starting salary of male and female graduates in this year’s college
graduates?

- Is there a difference in the weight of the products produced in the two production lines?

Generally, testing hypothesis for two populations means can be divided into three types, depending on the
type of alternative hypothesis.

Here  is the value for the difference in population means to be tested. When samples are selected
independently from two populations, the estimator of the difference of two population means, , is the
difference of sample means, . If two populations follow normal distributions and their variances can be
assumed to be the same, the testing hypothesis for the difference between the two populations means uses the
following statistic.

The test statistic follows a -distribution with  degrees of freedom. The decision rule for testing
the difference between the two populations' means is as follows.

Table 5.3.1 Testing hypothesis of two populations means

Type of Hypothesis Decision Rule

1) If , then reject , else accept 

2) If , then reject , else accept 

3) 
If , then reject , else accept 

Note: Assume independent samples, normal populations, population variances are equal.
If sample sizes are large enough ( ), -distribution is approximately close to the
standard normal distribution and the decision rule may use the standard normal distribution.

Example 5.3.1 Two machines produce cookies at a factory, and a cookie bag's average weight should be
270g. We sampled cookie bags from each of the two machines to examine the weight of the cookie
bags. The average weight of 15 cookie bags extracted from machine 1 was 275g, and their standard
deviation was 12g. The average weight of 14 cookie bags extracted from machine 2 was 269g, and the
standard deviation was 10g.

1) Find a 99% confidence interval for the difference between two population means.
2) Test whether the two machines' cookie bag weights are different. Use α = 0.01.
3) Check the test result using 『eStatU』.

n1 n2 X1
–

X2
–

s2
p

μ1 μ2

1) H0 : μ1 − μ2 = D0 H1 : μ1 − μ2 > D0

2) H0 : μ1 − μ2 = D0 H1 : μ1 − μ2 < D0

3) H0 : μ1 − μ2 = D0 H1 : μ1 − μ2 ≠ D0

D0

μ1 − μ2

x1 − x2
––

(x1 − x2) − D0

√ s2
p

n1
+

s2
p

n2

where s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

––

t n1 + n2 − 2

H0 : μ1 − μ2 = D0

H1 : μ1 − μ2 > D0

(x1−x2)−D0

√ s2
p

n1
+

s2
p

n2

> tn1+n2−2; α

––
H0 H0

H0 : μ1 − μ2 = D0

H1 : μ1 − μ2 < D0

(x1−x2)−D0

√ s2
p

n1
+

s2
p

n2

< −tn1+n2−2; α
––

H0 H0

H0 : μ1 − μ2 = D0

H1 : μ1 − μ2 ≠ D0
(x1−x2)−D0

√ s2
p

n1
+

s2
p

n2

> tn1+n2−2; α/2∣––∣ H0 H0

n1 > 30,n2 > 30 t
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Answer

1) We can summarize the sample information in this example as follows.

Therefore, the pooled variance of two samples is as follows.

Since the t-value for 99% confidence interval is , the 99% confidence
interval is as follows.

2) The hypothesis of this problem is . Hence, the decision rule is as follows.

 in this exaample. The calculation of the test statistic is as follows.

Since 1.457 < 2.7707,  can not be rejected.

3) In 『eStatU』 menu, select [Testing Hypothesis ]. At the window shown in <Figure 5.3.1>, check
the alternative hypotheses of not equal case at [Hypothesis], check the variance assumption of [Test
Type] as the equal case, check the significance level of 1%, check the independent sample, and enter
sample sizes , sample means , and sample variances as the following window. Click
[Execute] button to see the confidence interval and result of the testing hypothesis.

[Testing Hypothesis μ , μ ]

n1 = 15, x1 = 275, s1 = 12

n2 = 14, x2 = 269, s2 = 10

–

–

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

(15 − 1)122 + (14 − 1)102

15 + 14 − 2
= 122.815

t15+14−2; 0.01/2 = t27: 0.005 = 2.7707

(X1 − X2) − tn1+n2−2: α/2
√ S 2

p

n1
+

S 2
p

n2
, (X1 − X2) + tn1+n2−2: α/2

√ S 2
p

n1
+

S 2
p

n2

⎡⎢⎣––––⎤⎥⎦[ (275 − 269) − 2.7707√ 122.815

15
+

122.815

14
, (275 − 269) + 2.7707√ 122.815

15
+

122.815

14
]

[ −5.410, 17.410 ]

H0 : μ1 = μ2, H1 : μ1 ≠ μ2

′If 
(x1 − x2) − D0

√ s2
p

n1
+

s2
p

n2

> tn1+n2−2; α/2,  then reject H ′
0∣––∣D0 = 0

275 − 269

√ 122.815
15 + 122.815

14

= 1.457∣ ∣H0

μ1,μ2

n1,n2 x1,x2
––

1 2
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  Testing Hypothesis μ1, μ2

[Hypothesis]    Ho : μ1 - μ2 = D   0  
    H1 : μ1 - μ2 ≠ D     H1 : μ1 - μ2 > D     H1 : μ1 - μ2 < D
[Test Type]   t test       Significance Level   α = 0.01   (0 < α < 1)
[Sampling Type]   independent sample    paired sample
[Variance Assumption]    σ1

2 = σ2
2     σ1

2 ≠ σ2
2

[Sample Data]  Input either sample data using BSV or sample statistics at the next boxes
   Sample 1
   Sample 2
[Sample Statistics]

Sample Size n1 = 15 n2 = 14 nd =
Sample Mean x̄1 = 275 x̄2 = 269 d̄ =

Sample Variance s1
2 = 144 s2

2 = 100 sd
2 =

[Confidence Interval : μ1 - μ2 ]       tn1 + n2 - 2 ; α/2 = 

( x̄1 - x̄2 )   ±  [ D + tn1 + n2 - 2 ; α/2   √ ( sp
2 / n1 + sp

2 / n2 ) ] ⇔ [    ,  ]

sp
2 = [(n1-1) s1

2 + (n2-1) s2
2] / (n1 + n2 - 2) =

Execute        α = 0.01   0  1    Erase Data

Graph Save
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If variances of two populations are different, the test statistic

does not follow a -distribution even if populations are normally distributed. The testing hypothesis for two
populations means when their population variances are different is called a Behrens-Fisher problem, and
several methods to solve this problem have been studied. The Satterthwaite method approximates the degrees
of freedom of the -distribution in the decision rule in Table 5.3.1 with  as follows.

Example 5.3.2 (Monthly wages by male and female)
Random samples of 10 male and female college graduates this year showed their monthly wages as
follows. (Unit 10,000 KRW)

Male 272 255 278 282 296 312 356 296 302 312
Female 276 280 369 285 303 317 290 250 313 307
Ex ⇨ DataScience ⇨ WageByGender.csv.

Using 『eStat』, answer the following questions.

1) If population variances are assumed to be the same, test the hypothesis at the 5% significance level
of whether the average monthly wage for males and females is the same.

2) If population variances are assumed to be different, test the hypothesis at the 5% significance level
of whether the average monthly wage for males and females is the same.

Answer

1) In 『eStat』, enter raw data of gender (M or F) and income as shown in <Figure 5.3.1> on the sheet.
This type of data input is similar to all statistical packages. After entering the data, click the icon for
testing two populations' means and select 'Analysis Var' as V2 and 'By Group' variable as V1. A 95%
confidence interval graph that compares the sample means of two populations will be displayed as
<Figure 5.3.2>.

(x1 − x2) − D0

√ s2
1

n1
+

s2
2

n2

––

t

t ϕ

ϕ =
( s2

1

n1
+

s2
2

n2
)

2

(
s2

1
n1
)

2

n1−1 +
(

s2
2

n2
)

2

n2−1
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<Figure 5.3.1> Data input for testing two populations means

<Figure 5.3.2> Dot graph and confidence Intervals by gender for testing two populations means

In the options window, as in <Figure 5.3.3> located below the Graph Area, enter the average difference
 for the desired test, select the variance assumption , the 5% significance level and click

the [t-test] button. Then, the graphical result of the testing hypothesis for two populations' means will
be shown as in <Figure 5.3.4> and the test result as in <Figure 5.3.5>.

D = 0 σ2
1 = σ2

2
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<Figure 5.3.3> Options to test for two populations means

<Figure 5.3.4> Testing hypothesis for and – case of the same population variances

<Figure 5.3.5> The result of testing hypothesis for two populations means if population variances are the
same

2) Select the variance assumption  at the option window and click [t-test] button under the
graph to display the graph of the hypothesis test and the test result table as in <Figure 5.3.6> and
<Figure 5.3.7>.

σ2
1 ≠ σ2

2
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<Figure 5.3.6> Testing hypothesis for and – case of the different population variances

<Figure 5.3.7> result of testing hypothesis for two populations means if population variances are different

Practice 5.3.1 (Oral Cleanliness by Brushing Methods)
Oral cleanliness scores were examined for eight samples using the basic brushing method (coded 1) and
seven samples using the rotation method (coded 2). The data are saved at the following location of
『eStat』.

Ex ⇨ DataScience ⇨ ToothCleanByBrushMethod.csv

1) If population variances are the same, test the hypothesis at the 5% significance level to determine
whether scores for both brushing methods are the same using 『eStat』.

2) If population variances are different, test the hypothesis at the 5% significance level to determine
whether scores for both brushing methods are the same using 『eStat』.
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5.4 Testing hypothesis for several population
means: Analysis of variances

Section 5.3 discussed comparing the means of two populations using the testing hypothesis. This section
discusses comparing the means of several populations. There are many examples of comparing means of
several populations as follows.

- Are average hours of library usage for each grade the same?
- Are yields of three different rice seeds equal?
- In a chemical reaction, are response rates the same at four different temperatures?
- Are the average monthly wages of college graduates the same in three different cities?

The group variable used to distinguish population groups, such as the grade or the rice, is called a factor. This
section describes the one-way analysis of variance (ANOVA), which compares population means when there
is a single factor. Let us take a look at the following example.

Example 5.4.1 We collected samples randomly from each grade to compare the English proficiency
scores of each grade at a university, and the data are in Table 5.4.1. The last column is the average ,

, ,  for each grade.

Table 5.4.1 English Proficiency Score by Grade

Socre Student
1

Student
2

Student
3

Student
4

Student
5

Student
6

Student
Average

Grade 1 81 75 69 90 72 83 =78.3

Grade 2 65 80 73 79 81 69 =74.5

Grade 3 72 67 62 76 80 =71.4

Grade 4 89 94 79 88 =87.5

[Ex] ⇨ DataScience ⇨ EnglishScoreByGrade.csv.

1) Draw a dot graph of test scores for each grade and compare their averages using 『eStat』.
2) Set up a null hypothesis and an alternative hypothesis. Test a hypothesis whether the average scores

of each grade are the same or not.
3) Apply the one-way analysis of variances to test the hypothesis in question 2).
4) Check the result of the ANOVA test using 『eStat』.

Answer

1) Enter data on the sheet to draw a dot graph with data shown in Table 5.4.1 using 『eStat』, and set
variable names to 'Grade' and 'Score' as shown in <Figure 5.4.1>. In the variable selection box
appeared by clicking the ANOVA icon on the main menu of 『eStat』, select 'Analysis Var' as ‘Score’ and
'By Group' as ‘Grade’. The dot graph of English scores by each grade and the 95% confidence interval
are displayed in <Figure 5.4.2>. Clicking the 'Confidence Interval Graph' button, we can see a more
detailed comparison of the population mean on each dot graph. <Figure 5.4.2> shows sample means
as = 78.3,  = 74.5,  = 71.4,  = 87.5. The sample mean of the 4th grade is relatively larger
than the other grades and  and  are similar. Therefore, we can expect that the population

–y1⋅–y2⋅
–y3⋅

–y4⋅

–y1⋅

–y2⋅

–y3⋅

–y4⋅

–y1⋅
–y2⋅

–y3⋅
–y4⋅–y2⋅
–y3⋅
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mean  and  would be the same and  will differ from three other population means. However,
we need to test whether these differences of sample means are statistically significant.

<Figure 5.4.1> 『eStat』 data input for ANOVA

μ2 μ3 μ4
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<Figure 5.4.2> 95% Confidence Interval by grade

Clicking the [Histogram] button under this graph, as in <Figure 5.4.3>, to check the normality of the
data will draw histograms and normal distributions simultaneously, as shown in Figure 5.4.4>

<Figure 5.4.3> Options of ANOVA

<Figure 5.4.4> Histogram of English score by grade

2) In this example, the null hypothesis to test is that the population means of English scores of the four
grades are all the same, and the alternative hypothesis is that the population means of the English
scores are not the same. In other words, if  and  are the population means of English
scores for each grade, the hypothesis to test can be written as follows,

Null hypothesis : 
Alternative hypothesis : at least one pair of  is not the same

3) A measure that can be considered first as a basis for testing differences in multiple sample means
would be the distance from each mean to the overall mean. In other words, if the overall sample
mean for all 21 students is expressed as , the squared distance from each sample mean to the
overall mean is as follows when the number of samples in each grade is weighted. This squared
distance is called the between sum of squares (SSB) or the treatment sum of squares (SSTr).

 = 643.633

If the squared distance  is close to zero, all sample means of English scores for four grades are
similar. However, this treatment sum of squares can be larger if the number of populations increases.
Modifications are required to become a test statistic to determine whether several population means
are equal. The squared distance from each observation to its sample mean of the grade is called the
within sum of squares (SSW) or the error sum of squares (SSE) as defined below.

μ1,μ2,μ3, μ4

H0 μ1 = μ2 = μ3 = μ4
H1 μi

–y⋅⋅

SSTr = 6(78.3 − –y⋅⋅)
2 + 6(74.5 − –y⋅⋅)

2 + 5(71.4 − –y⋅⋅)
2 + 4(87.5 − –y⋅⋅)

2

SSTr

SSE = (81 − –y1⋅)
2 + (75 − –y1⋅)

2 + ⋯ + (83 − –y1⋅)
2

+(65 − –y2⋅)
2 + (80 − –y2⋅)

2 + ⋯ + (69 − –y2⋅)
2

+(72 − –y3⋅)
2 + (67 − –y3⋅)

2 + ⋯ + (80 − –y3⋅)
2
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If population distributions of English scores in each grade follow normal distributions and their
variances are the same, the following test statistic has the  distribution.

This statistic can be used to test whether or not the population's English scores in four grades are the
same. In the test statistic, the numerator  is called the treatment mean square (MSTr), which

implies a variance between grade means. The denominator  is called the error mean square
(MSE), which implies a variance within each grade. The MSE is a pooled variance of four sample
variances. Thus, the above test statistics are based on the ratio of two variances, which is why the
test of multiple population means is called an analysis of variance (ANOVA).

The calculated test statistic, which is the observed  value , using data of English scores for each
grade is as follows.

Since  = 3.20, the null hypothesis that population means of English scores of each grade are
the same, , is rejected at the 5% significance level. In other words, there is a
difference in population means of English scores of each grade. The following ANOVA table provides a
single view of the above calculation.

Factor Sum of Squares Degree of freedom Mean Squares F ratio

Treatment SSTr = 643.633 4-1 MSTr = 

Error SSE = 839.033 21-4 MSE = 

Total SST = 1482.666 20

4) In <Figure 5.4.3>, if you select the significance level of 5%, the confidence level of 95%, and click
[ANOVA F test] button, a graph showing the location of the test statistic in the F distribution is
appeared as shown in <Figure 5.4.5>. Also, in the Log Area, the mean and confidence interval tables
and test results for each grade appear in <Figure 5.4.6>.

<Figure 5.4.5> 『eStat』 ANOVA F test

+(89 − –y4⋅)
2 + (94 − –y4⋅)

2 + ⋯ + (88 − –y4⋅)
2

= 839.033

F3,17

F0 =
SSTr

(4−1)
SSE

(21−4)

SSTr
4−1

SSE
21−4

F F0

F0 =
SSTr
(4−1)

839.033
(21−4)

=
643.633
(4−1)

SSE
(21−4)

= 4.347

F3,17; 0.05

H0 : μ1 = μ2 = μ3 = μ4

643.633
3

F0 = 4.347

839.033
17
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<Figure 5.4.6> 『eStat』 Basic Statistics and ANOVA table

The analysis of variance is also possible using 『eStatU』  as below. Entering the data as below, and
clicking the [Execute] button will have the same result as in <Figure 5.4.5> and <Figure 5.4.6>.

[Single Factor ANOVA]
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    Single Factor ANOVA

[Hypothesis] Ho :   μ1 = μ2 = ... = μk
H1 : At least one pair of means is different

[Test Type]   F test (ANOVA)
      Significance Level   α = 0.05   (0 < α < 1)
[Sample Data]  Input either sample data using BSV or sample statistics at the next boxes
   Sample 1 81,75,69,90,72,83

   Sample 2 65,80,73,79,81,69

   Sample 3 72,67,62,76,80

   Sample 4 89,94,79,88

[Sample Statistics]
  n1 = 6   n2 = 6   n3 = 5   n4 = 4

  x̄1 = 78.33   x̄2 = 74.50   x̄3 = 71.40   x̄4 = 87.50

  s1
2 = 60.67   s2

2 = 43.10   s3
2 = 50.80   s4

2 = 39.00

Execute        α = 0.05   0  1    Erase Data

Multiple Comparison   LSD  5%HSD  1%HSD   Graph Save    Table Save
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The above example refers to two variables: the English score and grade. The variable, such as the English
score, is called an analysis variable or a response variable. The response variable is mostly a continuous
variable. The variable used to distinguish populations, such as the grade, is called a group variable or a
factor variable, which is mostly a categorical variable. Each value of a factor variable is called a level of the
factor, and the number of these levels is the number of populations to be compared. In the above example, the
factor has four levels, 1st, 2nd, 3rd and 4th grade. The term 'response' or 'factor' is originated to analyze data
in engineering, agriculture, medicine, and pharmacy experiments. The analysis of variance method that
examines the effect of a single factor on the response variable is called the one-way ANOVA. Table 5.4.2
shows the typical data structure of the one-way ANOVA when the number of levels of a factor is , and the
numbers of observations at each level are .

Table 5.4.2 Notation of the one-way ANOVA

Factor Observed values of sample Average

Level 1

Level 2

Level k

Total

Statistical model for the one-way analysis of variance is given as follows.

 represents the  observed value of the response variable for the  level of factor. The population mean
of the  level, , is represented as  where  is the mean of entire population and  is the effect of

 level for the response variable.  denotes an error term of the  observation for the  level, and the all
error terms are assumed independent of each other and follow the same normal distribution with the mean 0
and variance . The error term  is a random variable in the response variable due to reasons other than
levels of the factor. For example, in the English score example, differences in English performance for each
grade can be caused by other variables besides the variables of grade, such as individual study hours, gender
and IQ. However, by assuming that these variations are relatively small compared to variations due to

k

n1,n2, . . . ,nk

Y11 Y12 ⋯ Y1n1 Y 1⋅
–

Y21 Y22 ⋯ Y2n2 Y 2⋅
–

⋯ ⋯ ⋯

Yk1 Yk2 ⋯ Yknk Y k⋅
–

Y ⋅⋅
–

Yij = μi + ϵij
= μ + αi + ϵij, i = 1, 2, . . . , k; j = 1, 2, . . . ,ni

where ϵij ∽ N(0,σ2)

Yij jth ith

ith μi μ + αi μ αi

ith ϵij jth ith

σ2 ϵij
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differences in grade, the error term can be interpreted as the sum of these various reasons. The hypothesis to
test can be represented using  instead of  as follows.

Null hypothesis :  = 0
Alternative hypothesis : at least one  is not equal to 0

The analysis of variance table as Table 5.4.3 is used to test the hypothesis.

Table 5.4.3 Analysis of variance table of the one-way ANOVA

Factor Sum of Squares Degree of freedom Mean Squares F ratio

Treatment SSTr MSTr=

Error SSE MSE=

Total SST

where 

The three sum of squares for the analysis of variances can be described as follows.

SST =  :
The sum of squared distances between observed values of the response variable and the mean of total
observations is called the total sum of squares (SST).

SSTr =  :
The sum of squared distances between the mean of each level and the mean of total observations is called
the treatment sum of squares (SSTr). It represents the variation between level means.

SSE =  :
The sum of squared distances between observations of the  level and the mean of the  level is
referred to as 'within variation', and is called the error sum of squares (SSE).

The following logic determines the degree of freedom of each sum of squares. The SST consists of 
number of squares, , but  should be calculated first, before SST is calculated, and hence the
degree of freedom of SST is . The SSE consists of  number of squares, , but the number of
values,  should be calculated first before SSE is calculated, and hence, the degree of freedom
of SSE is . The degree of freedom of SSTr is calculated as the degree of freedom of SST minus the
degree of freedom of SSE, which is . In the one-way analysis of variance, the following partition of the
sum of squares and degree of freedom are always established;

Sum of squares: SST = SSTr + SSE
      Degrees of freedom: 
The sum of squares divided by the corresponding degrees of freedom is referred to as the mean squares, and
Table 5.4.3 defines the treatment mean squares (MSTr) and error mean squares (MSE). The treatment mean
square implies the average variation between each level of the factor, and the error mean square implies the
average variation within observations in each level. Therefore, if MSTr is relatively much larger than MSE,
we can conclude that the population means of each level, , are not the same. So by what criteria can you say
it is relatively much larger?

αi μi

H0 α1 = α2 = α3 = α4

H1 αi

k − 1 SSTr
k−1 F0 = MSTr

MSE

n − k SSE
n−k

n − 1

n = ∑n
i=1 ni

∑k
i=1 ∑

ni

j=1(Yij − Y ⋅⋅)2–

∑k
i=1 ∑

ni

j=1(Y i⋅ − Y ⋅⋅)2––

∑k
i=1 ∑

ni

j=1(Yij − Y i⋅)2–

ith ith

n

(Yij − Y ⋅⋅)2–Y ⋅⋅
–

n − 1 n (Yij − Y i⋅)2–

Y 1⋅,Y 2⋅, . . . ,Y k⋅
–––

n − k

k − 1

(n − 1) = (k − 1) + (n − k)

μi
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The calculated  value, , in the last column of the ANOVA table represents the relative size of MSTr
and MSE. If the assumptions of  are satisfied, and if the null hypothesis  = 0 is true,
then the test statistic follows a  distribution with degrees of freedoms  and .

Therefore, when the significance level is  for a test, if the calculated value  is greater than the value of
, then the null hypothesis is rejected. That is, it is determined that the population means of each

factor level are different. (Note: 『eStat』 calculates this test's -value. Hence, if the -value is smaller than the
significance level , then reject the null hypothesis.)

Practice 5.4.1 (Plant Growth by Condition)
Results from an experiment to compare yields (as measured by the dried weight of plants) obtained
under a control (leveled ‘ctrl’) and two treatment conditions (leveled ‘trt1’ and ‘trt2’). The weight
data with 30 observations on control and two treatments (‘crtl’, ‘trt1’, ‘trt2’), are saved at the
following location of 『eStat』. Answer the following using 『eStat』 ,

[Ex] ⇨ DataScience ⇨ PlantGrowth.csv

1) Draw a dot graph of weights for each control and treatment.
2) Test a hypothesis whether the weights are the same or not. Use the 5% significance level.

5.5 Regression analysis
5.5.1 Correlation analysis

Sample correlation coefficient  can be used for testing the hypothesis of a population correlation
coefficient . We test usually  which tests the existence of linear correlation. This test can be done
using  distribution as follows.

Testing a population correlation coefficient

Null hypothesis: 

Test statistic:  follows  distribution with  degrees of freedom

Rejection region of :
 Reject if 
 Reject if 
 Reject if 

We can also test a hypothesis  when , but please refer other statistics book.

Example 5.5.1 Based on the survey of advertising costs and sales for 10 companies that make the same
product, we obtained the following data as in Table 5.5.1. Draw a scatter plot for this data using

F F0

ϵij H0 : α1 = α2 = ⋯ = αk

F k − 1 n − k

F0 =

SSTr
(k−1)

SSE
(n−k)

α F0

Fk−1,n−k;α

p p

α

r

ρ H0 : ρ = 0

t

H0 : ρ = 0

t0 = √n − 2 r

√1−r2
t n − 2

H0

1) H1 : ρ < 0 : t0 < −tn−2; α

2) H1 : ρ > 0 : t0 > tn−2; α

3) H1 : ρ ≠ 0 : |t0| > tn−2; α/2

H0 : ρ = ρ0 ρ0 ≠ 0
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『eStat』, and find the sample correlation coefficient of the two variables. Test the hypothesis that the
population correlation coefficient is zero with the significance level 0.05.

Table 5.5.1 Advertising costs and sales (unit: 1 million USD)

Company Advertise (X) Sales (Y)

1 4 39

2 6 42

3 6 45

4 8 47

5 8 50

6 9 50

7 9 52

8 10 55

9 12 57

10 12 60

[Ex] ⇨ DataScience ⇨ SalesByAdvertise.csv.

Answer

Using 『eStat』 , enter data as shown in <Figure 5.5.1>. If you select the Sales as 'Y Var' and the Advertise
'by X Var' in the variable selection box that appears when you click the scatter plot icon on the main
menu, the scatter plot will appear as shown in <Figure 5.5.2>. As we can expect, the scatter plot show
that the more investments in advertising, the more sales increase, and not only that, the form of
increase is linear.

<Figure 5.5.1> Data input in 『eStat』
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<Figure 5.5.2> Scatter plot of sales by advertise

To calculate the sample covariance and correlation coefficient, it is convenient to make the following
table. This table can also be used for calculations in regression analysis.

Table 5.5.1 A table for calculating the covariance and correlation coefficient

Number

1 4 39 16 1521 156

2 6 42 36 1764 252

3 6 45 36 2025 270

4 8 47 64 2209 376

5 8 50 64 2500 400

6 9 50 81 2500 450

7 9 52 81 2704 468

8 10 55 100 3025 550

9 12 57 144 3249 684

10 12 60 144 3600 720

Sum 64 497 766 25097 4326

Mean 8.4 49.7

Terms which are necessary to calculate the covariance and correlation coefficient are as follows:

X Y X 2 Y 2 XY

SXX = ∑n
i=1(Xi − X)2 = ∑n

i=1 X
2
i − nX

2
= 766 − 10×8.42 = 60.4

––

SY Y = ∑n
i=1(Yi − Y )2 = ∑n

i=1 Y
2
i − nY

2
= 25097 − 10×49.72 = 396.1

––

SXY = ∑n
i=1(Xi − X)(Yi − Y ) = ∑n

i=1 XiYi − nXY = 4326 − 10×8.4×49.7 = 151.2
––––
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represent the sum of squares of , the sum of squares of , the sum of squares of 
. Hence, the covariance and correlation coefficient are as follows:

This sample correlation coefficient is consistent with the scatter plot which shows a strong positive
correlation of the two variables. The value of the test statistic  is as follows.

 = 13.117

Since it is greater than  = 2.306,  should be rejected.

The correlation analysis can be done using 『 eStatU 』  by following data input and clicking [Execute]
button..

[Correlation Analysis]

SXX,SY Y ,SXY X Y XY

SXY = 1
n−1 ∑

n
i=1(Xi − X)(Yi − Y ) = 151.2

10−1 = 16.8
––

r =
∑n

i=1(Xi−X)(Yi−Y )

√∑n

i=1(Xi−X)2 ∑n

i=1(Yi−Y )2
= 151.2

√60.4×396.1
= 0.978

––

––

t0

t0 = √10 − 2 0.978
√1−0.9782

t8; 0.025 H0 : ρ = 0
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  Correlation Analysis

[Hypothesis]    Ho : ρ = 0       H1 : ρ ≠ 0     H1 : ρ > 0     H1 : ρ < 0
[TestStat]      t0 = √(n-2) r / √(1-r2) =        p-value = 
[Sample Data]   (Sample size of each cell should be the same.)
   X Data Input 4,6,6,8,8,9,9,10,12,12

   Y Data Input 39,42,45,47,50,50,52,55,57,60

   Main Title 
   y title x title 

  Number of Data nx ny
  Mean X̄ Ȳ
  Sample Variance(n-1) Sx

2 Sy
2 Sample Covariance Sxy

  Sample Std Deviation Sx Sy Sample Correlation Coefficient r

Execute     Erase Data

 Regression Line

Graph Save
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Practice 5.5.1 A professor of statistics argues that a student's final test score can be predicted from his
midterm score. Ten students were randomly selected, and their mid-term and final exam scores are as
follows.

id Mid-term X Final Y

1 92 87

2 65 71

3 75 75

4 83 84

5 95 93

6 87 82

7 96 98

8 53 42

9 77 82

10 68 60

[Ex] ⇨ DataScience ⇨ MidtermFinal.csv.

1) Draw a scatter plot of this data with the X-axis mid-term and Y-axis final scores. What do you think is
the relationship between mid-term and final scores?

2) Find the sample correlation coefficient and test the hypothesis that the population correlation
coefficient is zero with a significance level 0.05.
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5.5.2 Simple linear regression

Data are concentrated around a straight line when two variables show a strong correlation. In this case,
linear regression analysis is a statistical model to estimate the straight line which describes the data's
relationship suitably. The estimated model can be applied to the forecasting analysis. For example, a
mathematical model of the relationship between sales ( ) and advertising costs ( ) would not only explain
the relationship between sales and advertising costs but would also be able to predict the sales for a given
investment for advertisement. As such, the regression analysis is intended to investigate and predict the degree
of relation between variables and the shape of the relation.

In regression analysis, a mathematical model of the relation between variables is called a regression
equation, and the variable affected by other related variables is called a dependent variable. The dependent
variable is the variable we would like to describe, which is usually observed in response to other variables, so
it is also called a response variable. In addition, variables that affect the dependent variable are called
independent variables. The independent variable is also referred to as the explanatory variable because it is
used to describe the dependent variable. In the previous example, if the objective is to analyze the change in
sales amounts resulting from increases and decreases in advertising costs, the sales is a dependent variable,
and the advertising cost is an independent variable. If the number of independent variables included in the
regression equation is one, it is called a simple linear regression. If the number of independent variables is
two or more, it is called a multiple linear regression, explained in section 5.5.3.

Simple linear regression analysis has only one independent variable, and the regression equation is as
follows.

In other words, the regression equation is represented by a linear equation of the independent variable, and 
and  are unknown parameters that represent the intercept and slope, respectively. The  and  are called the
regression coefficients. The above equation represents an unknown linear relationship between  and  in
population and is referred to as the population regression equation.

To estimate the regression coefficients  and , observations of the dependent and independent variables
are required, i.e., samples. In general, all of these observations are not located in a line. It is because, even if
the  and  have an exact linear relation, there may be a measurement error in the observations, or there may
not be an exact linear relationship between  and . Therefore, we can write the regression formula by
considering these errors as follows.

Where  is the subscript representing the  observation, and  is the random variable indicating an error with
a mean of zero and a variance  which is independent of each other. The error  indicates that the
observation  is how far away from the population regression equation. The above equation includes
unknown population parameters , , and  and is referred to as a population regression model.

Y X

Y = f(X,α,β) = α + βX

α

β α β

Y X

α β

Y X

Y X

Yi = α + βXi + ϵi, i = 1, 2, . . . ,n

i ith ϵi

σ2 ϵi

Yi

α β σ2
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If  and  are the estimated regression coefficients using samples, the fitted regression equation can be
written as follows. It is referred to as the sample regression equation.

In this expression,  represents the estimated value of  at  as predicted by the appropriate
regression equation. These predicted values can not match the actual observed values of , and differences
between these values are called residuals and denoted as .

The regression analysis makes assumptions about the unobservable error . Since the residuals  calculated
using the sample values have similar characteristics as , they are used to investigate the validity of these
assumptions.

When sample data, , are given, a straight line representing it can be drawn in
many ways. Since one of the main objectives of a regression analysis is prediction, we would like to use the
estimated regression line that would make the residuals smallest that the error occurs when predicting the
value of Y. However, it is impossible to minimize the residuals' value at all points, and it should be chosen to
make the residuals 'totally' smaller. The most widely used of these methods is a method that minimizes the
total sum of squared residuals, called a method of least squares.

Method of least squares

A method of estimating regression coefficients so that the total sum of the squared errors occurring in
each observation is minimized. i.e.,

To obtain the values of  and  by the least squares method, the sum of squares above should be differentiated
partially with respect to  and , and equate them zero respectively. If the solution of  and  of these
equations is  and , the equations can be written as follows.

The above expression is called a normal equation. The solution  and  of this normal equation is called a
least squares estimator of  and , and is given as follows.

After estimating the regression line, how valid it is should be investigated. Since a regression analysis
aims to describe a dependent variable as a function of an independent variable, it is necessary to find out how
much the explanation is. A residual standard error and a coefficient of determination are used for such

a b

Ŷi = a + bXi

Ŷi Y X = Xi

Y

ei

residuals ei = Yi − Ŷi, i = 1, 2, . . . ,n

ϵi ei

ϵi

(X1,Y1), (X2,Y2), . . . , (Xn,Yn)

Find α and β which minimize
n

∑
i=1

ϵ2
i =

n

∑
i=1

(Yi − α − βXi)
2

α β

α β α β

a b

a ⋅ n + b
n

∑
i=1

Xi =
n

∑
i=1

Yi

a
n

∑
i=1

Xi + b
n

∑
i=1

X 2
i =

n

∑
i=1

XiYi

a b

α β

b =
∑n

i=1(Xi − X)(Yi − Y )

∑n
i=1(Xi − X)2

a = Y − bX

––

–

––
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validation studies. Residual standard error  measures the extent to which observations are scattered around
the estimated line. First, you can define the sample variance of residuals as follows.

The residual standard error  is the square root of . The  is an estimate of  which is the extent that the
observations  are spread around the population regression line. A small value of  or  indicates that the
observations are close to the estimated regression line, which in turn implies that the regression line represents
well the relationship between the two variables.

However, it is not clear how small the residual standard error  is, although the smaller the value is, the
better. In addition, the size of the value of  depends on the unit of . A relative measure called the coefficient
of determination is defined to eliminate this shortcoming. The coefficient of determination is the ratio of the
variation described by the regression line over the total variation of observation , so that it is a relative
measure that can be used regardless of the type and unit of a variable. As in the analysis of variance in the
previous section, the following partitions of the sum of squares and degrees of freedom are established in the
regression analysis:

Description of the above three sums of squares is as follows.

Total sum of squares : 
The total sum of squares indicating the total variation in observed values of  is called the total sum of
squares ( ). This  has the degree of freedom, , and if  is divided by the degree of
freedom, it becomes the sample variance of .

Error sum of squares : 
The error sum of squares ( ) of the residuals represents the unexplained variation of the total variation
of the . Since the calculation of this sum of squares requires the estimation of two parameters  and ,

 has the degree of freedom . This is the reason why, in the calculation of the sample variance of
residuals , it was divided by .

Regression sum of squares : 
The regression sum of squares ( ) indicates the variation explained by the regression line among the
total variation of . This sum of squares has the degree of freedom of 1.

If the estimated regression equation fully explains the variation in all samples (i.e., if all observations are
on the sample regression line), the unexplained variation  will be zero. Thus, if the portion of  is
small among the total sum of squares , or if the portion of  is large, the estimated regression model is
more suitable. Therefore, the ratio of  to the total variation , called the coefficient of determination,
is defined as a measure of the suitability of the regression line as follows.

The value of the coefficient of determination is always between 0 and 1, and the closer the value is to 1, the
more concentrated the samples are around the regression line, which means that the estimated regression line
explains the observations well.

s

s2 =
1

n − 2

n

∑
i=1

(Yi − Ŷi)
2

s s2 s2 σ2

Y s s2

s

s Y

Yi

Sum of squares: SST = SSE + SSR

Degrees of freedom: (n − 1) = (n − 2) + 1

SST = ∑n
i=1(Yi − Y )2–

Y

SST SST n − 1 SST

Yi

SSE = ∑n
i=1(Yi − Ŷi)

2

SSE

Y α β

SSE n − 2

s2 n − 2

SSR = ∑n
i=1(Ŷi − Y )2–

SSR

Y

SSE SSE

SST SSR

SSR SST

R2 =
Explained V ariation

Total V ariation
=

SSR

SST
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If we divide three sums of squares obtained in the above example by their degrees of freedom, each
becomes a variance. For example, if you divide the  by  degrees of freedom, then it becomes the
sample variance of the observed values . If you divide the  by  degrees of freedom, it
becomes  which is an estimate of the variance of error . For this reason, addressing the problems
associated with the regression using the partition of the sum of squares is called the ANOVA of regression.
Information required for ANOVA, such as a calculated sum of squares and degrees of freedom, can be
compiled in the ANOVA table, as shown in Table 5.5.2.

Table 5.5.2 Analysis of variance table for simple linear regression

Source Sum of squares Degrees of freedom Mean Squares F value

Regression SSR 1 MSR =

Error SSE MSE = 

Total SST

The sum of squares divided by its degrees of freedom is referred to as mean squares, and Table 5.5.2 defines
the regression mean squares ( ) and error mean squares ( ) respectively. As the expression indicates,

 is the same statistic as  which is the estimate of . The  value given in the last column is used for
testing the hypothesis . If  is not 0, the  value can be expected to be large because the
assumed regression line is valid and the variation of  is explained in large part by the regression line.
Therefore, we can reversely decide that  is not zero if the calculated  ratio is large enough. If the
assumptions about the error terms mentioned in the population regression model are valid and if the error
terms follow a normal distribution, the distribution of  value, when the null hypothesis is true, follows 
distribution with 1 and  degrees of freedom. Therefore, if , then we can reject . (In
『eStat』, the -value for this test is calculated, and the decision can be made using this -value. That is, if the 
-value is less than the significance level, the null hypothesis  is rejected.)

One assumption of the error term  in the population regression model is that it follows a normal
distribution with a mean of zero and variance of . Under this assumption, the regression coefficients and
other parameters can be estimated and tested. Note that, under the assumption above, the regression model

 follows a normal distribution with the mean  and variance .

1) Inference on the parameter 
The parameter , the slope of the regression line, indicates the existence and extent of a linear
relationship between the dependent and the independent variables. The inference for  can be
summarized as follows. The test for hypotheses  is used to determine the independent variable
describes the dependent variable significantly or not. The  test for the hypothesis  described
in the ANOVA of regression is theoretically the same as in the test below.

Point estimate: 

Standard error of estimate : 

Confidence interval of : 

SST n − 1

Y1,Y2, . . . ,Yn SSE n − 2

s2 σ2

SSR
1 F0 = MSR

MSE

n − 2 SSE
n−2

n − 1

MSR MSE

MSE s2 σ2 F

H0 : β = 0, H1 : β ≠ 0 β F

Y

β F

F F

n − 2 F0 > F1,n−2; α H0 : β = 0

p p p

H0

ϵ

σ2

Y = α + βX + ϵ α + βX σ2

β

β

β

H0 : β = 0

F H0 : β = 0

b =
∑n

i=1(Xi−X)(Yi−Y )

∑n
i=1(Xi−X)2

, b ∼ N(β, σ2

∑n
i=1(Xi−X)2

)
––

––

b SE(b) = s

√∑n
i=1(Xi−X)2–

β b ± tn−2;α/2 ⋅ SE(b)
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Testing hypothesis:
 Null hypothesis: 
 Test statistic: 
 rejection region:

 : 
 : 
 : 

2) Inference on the parameter 
The inference for the parameter , which is the intercept of the regression line, can be summarized
below. The parameter  is not so interesting in most of the analysis because it represents the average
value of the response variable when an independent variable is 0.

Point estimate: 

Standard error of estimate : 

Confidence interval of : 
Testing hypothesis:

 Null hypothesis: 
 Test statistic: 

 rejection region:
 : 
 : 
 : 

3) Inference on the average value 
At any point in , the dependent variable  has an average value . Estimation of

 is also considered an important parameter because it means predicting the mean value of  .

Point estimate: 

Standard error of estimate : 

Confidence interval of : 

The confidence interval formula of the mean value  depends on the value of the  given the standard
error of the estimate, so the width of the confidence interval depends on the value of the given . As the
formula for the standard error shows, this width is the narrowest at a time , and if  is the farther away
from , the wider it becomes. If we calculate the confidence interval for the mean value of  at each point of

, and then if we connect the upper and lower limits, we have a confidence band of the regression line on
the above and below of the sample regression line.

Example 5.5.2 In Example 5.5.1, find the least squares estimate of the slope and intercept if the sales
amount is a dependent variable and the advertising cost is an independent variable.
1) Predict the amount of sales when you have spent on advertising by 10.
2) Calculate the value of the residual standard error and the coefficient of determination.
3) Prepare an ANOVA table and test it using the 5% significance level.

H0 : β = β0

t = b−β0

SE(b)

H1 : β < β0 t < −tn−2;α

H1 : β > β0 t > tn−2;α

H1 : β ≠ β0 |t| > tn−2;α/2

α

α

α

a = Y − bX, a ∼ N(α, ( 1
n + X

2

∑n
i=1(Xi−X)2

) ⋅ σ2)
–––
–

a SE(a) = s ⋅ √ 1
n

+ X
2

∑n
i=1(Xi−X)2

)
–
–

α a ± tn−2;α/2 ⋅ SE(a)

H0 : α = α0

t = a−α0

SE(a)

H1 : α < α0 t < −tn−2;α

H1 : α > α0 t > tn−2;α

H1 : α ≠ α0 |t| > tn−2;α/2

μY |x = α + βX0

X = X0 Y μY |x = α + βX0

μY |x Y

Ŷ0 = a + bX0

Ŷ0 SE(Ŷ0) = s ⋅ √ 1
n

+ (X0−X)2

∑n
i=1(Xi−X)2

–

–

μY |x Ŷ0 ± tn−2;α/2 ⋅ SE(Ŷ0)

μY |x X

X

X = X
–

X

X
–

Y

X
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Answer

1) In Example 5.5.1, the calculation required to obtain the intercept and slope has already been made.
The intercept and slope using this are as follows.

Therefore, the fitted regression line is . <Figure 5.5.3> shows the fitted regression
line on the original data. The slope value, 2.5033, means that if advertising cost increases by one (i.e.,
one million), sales increase by about 2.5 million.

<Figure 5.5.3> Simple linear regression using 『eStat』

Prediction of the sales amount of a company with an advertising cost of 10 can be obtained using the
fitted sample regression line as follows.

In other words, sales of 53.705 million are expected. That is not to say that all companies with
advertising costs of 10 million USD have sales of 53.705 million USD, but that the average amount of
their sales is about that. Therefore, there may be some differences in individual companies.

2) To obtain the residual standard error and the coefficient of determination, it is convenient to make
the following Table 12.2.1. Here, the estimated value  of the sales from each value of  uses the
fitted regression line.

Table 5.5.3 Useful calculations for the residual standard error and coefficient of determination

Number

1 4 39 38.639 114.49 122.346 0.130

2 6 42 43.645 59.29 36.663 2.706

3 6 45 43.645 22.09 36.663 1.836

b = ∑n
i=1(Xi−X)(Yi−Y )

∑n

i=1(Xi−X)2
= 151.2

60.4 = 2.503
––

–

a = Y − bX = 49.7 − 2.503 × 8.4 = 28.672
––

Ŷi = 28.672 + 2.503Xi

28.672 + (2.503)(10) = 53.702

Ŷi Xi

Ŷi = 28.672 + 2.503Xi

Xi Yi Ŷi SST

(Yi − Y i)2–
SSR

(Ŷi − Y i)2–
SSE

(Yi − Ŷi)2
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4 8 47 48.651 7.29 1.100 2.726

5 8 50 48.651 0.09 1.100 1.820

6 9 50 51.154 0.09 2.114 1.332

7 9 52 51.154 5.29 2.114 0.716

8 10 55 53.657 28.09 15.658 1.804

9 12 57 58.663 53.29 80.335 2.766

10 12 60 58.663 106.09 80.335 1.788

Sum 64 497 496.522 396.1 378.429 17.622

Average 8.4 49.7

In Table 12.2.1,  = 396.1,  = 378.429,  = 17.622. Here, the relationship of
 does not exactly match because number of digits calculation error. The sample

variance of residuals is as follows.

Hence, the residual standard error is  = 1.484. The coefficient of determination is as follows.

It means that 95.6% of the total variation in the observed 10 sales amounts can be explained by the
simple linear regression model using a variable of advertising costs, so this regression line is quite
useful.

3) The ANOVA table using the calculated sum of squares is as follows.

Source Sum of squares Degrees of freedom Mean Squares  value

Regression 378.42 1 MSR =  = 378.42

Error 17.62 10-2 MSE = 

Total 396.04 10-1

Since the calculated  value of 172.0 is much greater than , we reject the null hypothesis
 with the significance level  = 0.05. Inferences about each parameter with the result of a

regression analysis are as follows.

(a) Inference for 

The point estimate of  is  = 2.5033, and the standard error of  is as follows.

Hence, the 95% confidence interval of  using  = 2.056 is as follows.

 i.e. the interval (2.1110, 2.8956).

The test statistic for the hypothesis , is as follows.

 = 13.12

Since  = 2.056, the null hypothesis  is rejected with the significance level of  =
0.05. This result of the two-sided test can be obtained from the confidence interval. Since the 95％
confidence interval (1.7720, 3.2346) does not include 0, the null hypothesis  can be
rejected.

SST SSR SSE

SST = SSE + SSR

s2 = 1
n−2 ∑

n
i=1(Yi − Ŷi)2 = 17.622

(10−2) = 2.203

s

R2 = SSR
SST

= 378.429
396.1 = 0.956

F

378.42
1 F0 = 378.42

2.20 = 172.0

17.62
8

= 2.20

F F1,8; 0.05 = 5.32
H0 : β = 0 α

β

β b b

SE(b) = s

√∑n
i=1(Xi−X)2

= 1.484
√60.4

= 0.1908–

β t8; 0.025

2.5033 ± (2.056)(0.1908)
2.5033 ± 0.3922

H0 : β = 0

t = 2.5033−0
0.1908

t8;0.025 H0 : β = 0 α

H0 : β = 0
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(b) Inference for 

The point estimate of  is  = 29.672, and its standard error is as follows.

 = 1.670

Since the value of  statistic is  = 17.1657 and  = 2.056, the null hypothesis  is
also rejected with the significance level  = 0.05.

(c) Inference for the average value of 

In 『eStat』 , the standard error of , which is the estimate of , is calculated at each point of .

For example, the point estimate of  at  = 8 is  = 28.672 + 2.503 × 8 = 48.696 and its standard
error is 0.475.

Hence, the 95% confidence interval of  is as follows.

 i.e., the inteval is (47.718, 49.674).

We can calculate the confidence interval for other values of  similarly as follows.

 At 
 At 
 At 
 At 

As we discussed, the confidence interval becomes wider as  is far from .

If you select the [Confidence Band] button from the options below, the regression graph of <Figure
5.5.3>, you can see the confidence band graph on the scatter plot together with the regression line
as <Figure 5.5.4>. If you click the [Correlation and Regression] button, the inference result of each
parameter will appear in the Log Area, as shown in <Figure 5.5.3>.

α

α a

SE(a) = s ⋅ √ 1
n

+ X
2

∑n
i=1(Xi−X)2

= 1.484 ⋅√ 1
10 + 8.42

60.4

–

–

t 29.672
1.67 t8;0.025 H0 : α = 0

α

Y

Ŷ μY |x X

Y X Ŷ

SE(Ŷ0) = s ⋅ √ 1
n + (X0−X)2

∑n
i=1(Xi−X)2

–

–

= 1.484 ⋅√ 1
10 + (8−8.4)2

60.4 = 0.475

μY |x

48.696 ± (2.056)×(0.475)
48.696 ± 0.978

X

X = 4, 38.684 ± (2.056)×(0.962) ⇒ (36.705, 40.663)
X = 6, 47.690 ± (2.056)×(0.656) ⇒ (42.341, 45.039)
X = 9, 51.199 ± (2.056)×(0.483) ⇒ (50.206, 52.192)
X = 12, 58.708 ± (2.056)×(0.832) ⇒ (56.997, 60.419)

X X
–
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<Figure 5.5.4> Confidence band using 『eStat』

<Figure 5.5.5> Testing hypothesis of regression coefficients

[Simple Linear Regression Analysis]
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  Simple Linear Regression Analysis

   Y Data Input 39,42,45,47,50,50,52,55,57,60

   X Data Input 4,6,6,8,8,9,9,10,12,12

   Main Title 
   y title Y x title X

  Number of Data nx ny
  Mean X̄ Ȳ
  Sample Variance(n-1) Sx

2 Sy
2

  SampleStd Deviation Sx Sy
  Sample Covariance / Correlation Coefficient Sxy r

Execute    Confidence Band    Erase Data

  Scatter Plot      Residual Plot     Residual Q-Q Plot     Graph Save     Table Save
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Practice 5.5.2 Using the data of [Practice 5.5.1] for the mid-term and final exam scores, find the
following:
1) Least squares estimates for the slope and intercept if the final exam score is a dependent variable

and the mid-term scores is an independent variable.
2) Predict the final exam score when you have a mid-term score of 80.
3) Residual standard error and coefficient of determination.
4) Prepare an ANOVA table and test it using the 5% significance level.
5) Make inferences about each parameter using 『eStat』 and draw the confidence band.

5.5.3 Multiple linear regression

For actual applications of the regression analysis, the multiple regression models with two or more
independent variables are more frequently used than the simple linear regression with one independent
variable. It is rare for a dependent variable to be sufficiently explained by a single independent variable; in
most cases, a dependent variable has a relationship with several independent variables. For example, we can
expect that sales will be significantly affected by advertising costs, examples of simple linear regression, and
product quality ratings, and the number and size of stores sold. The statistical model used to identify the
relationship between one dependent variable and several independent variables is called a multiple linear
regression analysis. However, the simple linear regression and multiple linear regression analysis differ only
in the number of independent variables involved, and there is no difference in the analysis method.

In the multiple linear regression model, it is assumed that the dependent variable  and  number of
independent variables have the following relational formulas:

It means that the dependent variable is represented by the linear function of the independent variables and a
random variable that represents the error term as in the simple linear regression model. The assumption of the
error terms is the same as the assumption in the simple linear regression. In the above equation,  is the

Y k

Yi = β0 + β1Xi1 + ⋯ + βkXik + ϵi

β0
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intercept of  axis and  is the slope of the Y axis and  which indicates the effect of  to  when other
independent variables are fixed.

Example 5.5.3 When logging trees in forest areas, it is necessary to investigate the amount of timber in
those areas. Since it is difficult to measure the volume of a tree directly, we can estimate the volume
using the diameter and height of a tree, which is relatively easy to measure. The data in Table 5.5.4
showes the values for measuring diameter, height, and volume after sampling 15 trees in a region. (The
diameter was measured 1.5 meters above the ground.) Draw a scatter plot matrix of this data and
consider a regression model for this problem.

Table 5.5.4 Diameter, height and volume of tree

Diameter( ) Height( ) Volume( )

21.0 21.33 0.291

21.8 19.81 0.291

22.3 19.20 0.288

26.6 21.94 0.464

27.1 24.68 0.532

27.4 25.29 0.557

27.9 20.11 0.441

27.9 22.86 0.515

29.7 21.03 0.603

32.7 22.55 0.628

32.7 25.90 0.956

33.7 26.21 0.775

34.7 21.64 0.727

35.0 19.50 0.704

40.6 21.94 1.084

[Ex] ⇨ DataScience ⇨ TreeVolume.csv.

Answer

Load the data saved at the following location of 『eStat』.

[Ex] ⇨ DataScience ⇨ TreeVolume.csv

In the variable selection box, which appears by selecting the regression icon, select 'Y variable' by
volume and select ‘by X variable’ as the diameter and height to display a scatter plot matrix, as shown
in <Figure 5.5.6>. It can be observed that there is a high correlation between volume and diameter, and
that volume and height, as well as diameter and height, are also somewhat related.

Y βi Xi Xi Y

cm m m3
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<Figure 5.5.6> Scatterplot matrix

<Figure 5.5.7> Correlation matrix

Since the volume is to be estimated using the diameter and height of the tree, the volume is the
dependent variable , and the diameter and height are independent variables  respectively, and
we can consider the following regression model.

The same analysis of multiple linear regression can be done using 『eStatU』 by following data input and
clicking [Execute] button..

[Multiple Linear Regression Analysis]

Y X1,X2

Yi = β0 + β1Xi1 + β2Xi2 + ϵi, i = 1, 2, . . . , 15
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Menu  Multiple Linear Regression Analysis

  Variable Name   Data Input
  Y 0.291,0.291,0.288,0.464,0.532,0.557,0.441,0.515,0.603,0.628,0.956,0.775,0.727,0

  X1 21.0,21.8,22.3,26.6,27.1,27.4,27.9,27.9,29.7,32.7,32.7,33.7,34.7,35.0,40.6

  X2 21.33,19.81,19.20,21.94,24.68,25.29,20.11,22.86,21.03,22.55,25.90,26.21,21.64,1

  X3

  X4
  X5

 Execute     Erase Data

 Scatter Plot Matrix   Residual Plot   Residual Q-Q Plot   Graph Save   Table Save
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Practice 5.5.3 A health scientist randomly selected 20 people to determine the effect of smoking and
obesity on their physical strength and examined the average daily smoking rate ( , number/day), the
ratio of weight by height ( , kg/m), and the time to continue to exercise with a certain intensity ( , in
hours). Draw a scatter plot matrix of this data and consider a regression model for this problem.

smoking rate ratio of weight by height time to continue to exercise

24 53 11

0 47 22

25 50 7

0 52 26

5 40 22

18 44 15

20 46 9

0 45 23

15 56 15

6 40 24

0 45 27

15 47 14

18 41 13

5 38 21

10 51 20

0 43 24

12 38 15

0 36 24

15 43 12

12 45 16

[Ex] ⇨ DataScience ⇨ SmokingObesityExercis.csv.

x1
x2 y

x1 x2 y
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In general, matrices and vectors are used to facilitate the expression of formulas and the calculation of
expressions. For example, if there are  number of independent variables, the population multiple regression
model at the observation point  is presented as follows.

Here  are defined as follows.

In a multiple regression analysis, it is necessary to estimate the  number of regression coefficients
 using samples. In this case, the least squares method, which minimizes the sum of the squared

errors is also used. We find , which minimizes the following sum of the error squares.

As in the simple linear regression, the above error sum of squares is differentiated with respect to  and then
equate to zero, called a normal equation. The solution of the equation denoted as  which is called the least
squares estimate of , should satisfy the following normal equation.

Therefore, if there exists an inverse matrix of , the least squares estimator of , , is as follows.

(Note: Statistical packages uses a different formula, because the above formula causes large amount of
computing error)

If the estimated regression coefficients are , the estimate of the response variable  is
as follows.

The residuals are as follows.

using a vector notation, the residual vector  can be defined as follows.

k

i = 1, 2, . . . ,n

Y = Xβ + ϵ

Y, X, β, ϵ

Y = , X = , β = , ϵ =

⎡⎢⎣Y1

Y2

⋅

⋅

Yn

⎤⎥⎦ ⎡⎢⎣1 X11 X12 ⋯ X1k

1 X21 X22 ⋯ X2k

⋯

⋯

1 Xn1 Xn2 ⋯ Xnk

⎤⎥⎦ ⎡⎢⎣β0

β1

⋅

⋅

βk

⎤⎥⎦ ⎡⎢⎣ϵ1

ϵ2

⋅

⋅

ϵn

⎤⎥⎦k + 1

β0,β1, . . . ,βk

β

S =
n

∑
i=1

ϵ2
i = ϵ′ϵ = (Y − X′β)′(Y − X′β)

β

b

β

(X′X)b = X′y

X′X β b

b = (X′X)−1X′y

b = (b0, b1, . . . , bk) Y

Ŷi = b0 + b1Xi1 + ⋯ + bkXik

ei = Yi − Ŷi

= Yi − (b0 + b1Xi1 + ⋯ + bkXik)

e

e = Y − Xb
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The standardized residual error and coefficient of determination are also used to investigate the validity of the
estimated regression line in the multiple regression analysis. In the simple linear regression analysis, the
computational formula for these measures was given as a function of the residuals, i.e., the observed value of

 and its predicted value have nothing to do with the number of independent variables. Therefore, the same
formula can be used in the multiple linear regression, and there is only a difference in the value of the degrees
of freedom that each sum of squares has. In the multiple linear regression analysis, the standard error of
residuals is defined as follows.

As in simple linear regression,  is a statistic such as the residual mean squares ( ).

The coefficient of determination is given in  and its interpretation is as shown in the simple
linear regression. The same formula defines the sum of squares as in the simple linear regression, and it can
be divided with corresponding degrees of freedom as follows. The table of the analysis of variance is shown
in Table 5.5.5.

 Sum of squares 
 Degrees of freedom 

Table 5.5.5 Analysis of variance table for multiple linear regression analysis

Source Sum of squares Degrees of freedom Mean Squares F value

Regression SSR MSR = 

Error SSE MSE = 

Total SST

The  value in the above ANOVA table is used to test the significance of the regression equation, the null
hypothesis is that all independent variables are not linearly related to the dependent variables.

Since  follows  distribution with  and  degrees of freedom under the null hypothesis, we can
reject  at the significance level  if . Each  can also be tested, which is described in the
following sections. (Also, 『eStat』 calculates the -value for this test, so use this -value to test. That is, if the

-value is less than the significance level, the null hypothesis is rejected.)
Parameters of interest in multiple linear regression, as in the simple linear regression, are the expected

value of Y and each regression coefficient . The inference of these parameters  is
made possible by obtaining a probability distribution of the point estimates . Under the assumption that the
error terms  are independent and all have a distribution of , it can be shown that the distribution of

 is as follows.

The above  is the  diagonal element of the  matrix . In addition, using an
estimate  instead of a parameter , you can make inferences about each regression coefficient using the 
distribution.

Y

s =
1

n − k − 1

n

∑
i=1

(Yi − Ŷi)2

⎷s2 MSE

R2 = SSR
SST

SST = SSE + SSR

(n − 1) = (n − k − 1) + k

k SSR
k

F0 = MSR
MSE

n − k − 1 SSE
n−k−1

n − 1

F

H0 : β1 = β2 = ⋯ = βk = 0
H1 : At least one of k number of βis is not equal to 0

F0 F k (n − k − 1)

H0 α F0 > Fk,n−k−1;α βi

p p

p

β0,β1, ⋯ ,βk β0,β1, ⋯ ,βk

bi

ϵi N(0,σ2)

bi

bi ∼ N(βi, cii ⋅ σ2), i = 0, 1, 2, . . . , k

cii ith (k + 1) × (k + 1) (X′X)−1

s2 σ2 t
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Inference on regression coefficient 
Point estimate: 
Standard error of estimate : 
Confidence interval of : 
Testing hypothesis:

 Null hypothesis: 
 Test statistic: 
 Rejection region:

 : 
 : 
 : 

Residual analysis of the multiple linear regression is the same as in the simple linear regression.

Example 5.5.4 For the tree data of [Example 5.5.3], obtain the least squares estimate of each
coefficient of the proposed regression equation using 『eStat』  and apply the analysis of variance, test
for goodness of fit and test for regression coefficients.

Answer

In the options window below the scatter plot matrix in <Figure 5.5.6>, click [Regression Analysis]
button. Then, you can find the estimated regression line, ANOVA table, as shown in <Figure 5.5.8> in the
Log Area. The estimated regression equation is as follows.

In the above equation, 0.037 represents the increase of the volume of the tree when the diameter ( )
increases 1(cm).

The -value calculated from the ANOVA table in <Figure 5.5.8> at  value of 73.12 is less than 0.0001,
so you can reject the null hypothesis  at the significance level  = 0.05. The coefficient
of determination,  = 0.924, implies that 92.4% of the total variances of the dependent variable are
explained by the regression line. Based on the above two results, we can conclude that the diameter
and height of the tree are quite useful in estimating the volume.

<Figure 5.5.8> Result of Multiple Linear Regression

Since  and  = 2.179 from the result in <Figure 5.5.8>, the 95%
confidence intervals for each regression coefficients can be calculated as follows. The difference
between this result and the <Figure 5.5.8> due to the error in the calculation below the decimal point.

 95% confidence interval for  0.037  (2.179)(0.003)  (0.029, ~0.045)
 95% confidence interval for  0.024  (2.179)(0.008)  (0.006,~ 0.042)

In the hypothesis test of  , each -value is less than the significance level of
0.05, so you can reject each null hypothesis.

βi

bi

b SE(bi) = √cii ⋅ s

βi bi ± tn−k−1;α/2 ⋅ SE(bi)

H0 : βi = βi0

t = bi−βi0

SE(bi)

H1 : βi < βi0 t < −tn−k−1; α

H1 : βi > βi0 t > tn−k−1; α

H1 : βi ≠ βi0 |t| > tn−k−1; α/2

Ŷi = −1.024 + 0.037X1 + 0.024X2

X1

p F

H0 : β1 = β2 = 0 α
R2

SE(b1) = 0.003, SE(b2) = 0.008 t12;0.025

β1 : ± ⇒
β2 : ± ⇒

H0 : βi = 0, H1 : βi ≠ 0 p
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Practice 5.5.4 Apply a multiple regression model using 『eStat』  on the regression model of [Practice
5.5.3]. Obtain the least squares estimate of each coefficient of the proposed regression equation and
apply the analysis of variance, test for goodness of fit, and test for regression coefficients.

5.6 R practice
R practice

Let us practice testing hypothesess in this chapter using R commands. Since there is no package for the
testing hypothesis in R, we have to calculate test statistic and p-value one by one. The distribution functions
of the normal, t, and F distribution in R will be used to calculate the p-value.

Normal Distribution

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

q quantile

mean mean of normal distribution, default = 0.

sd standard deviation of normal distribution, default = 1.

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise P[X>x].

log.p logical; if TRUE, probabilities p are given as log(p).

Student t Distribution

pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

q quantile

df degree of freedom(>0, maybe non-integer). df = Inf is allowed.

ncp non-centrality parameter δ; currently except for rt(), accurate only for abs(ncp) <= 37.62. If omitted,
use the central t distribution.

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise P[X>x].

log.p logical; if TRUE, probabilities p are given as log(p).

F Distribution

pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)

q quantile

df1, df2 degree of freedom. Inf is allowed.

ncp non-centrality parameter. If omitted, the central F distribution.

lower.tail logical; if TRUE (default), probabilities are P[X≤x], otherwise P[X>x].

log.p logical; if TRUE, probabilities p are given as log(p).

# Example 5.2.1 Testing hypothesis for a population mean with known population standard deviation.
# Enter mu_0, n, xbar, and population standard deviation, then calculate test statistic and p-value.
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> mu0 <- 1500
> n <- 30
> xbar <- 1555
> sigma <- 200
> teststat <- (xbar - mu0) / (sigma / sqrt(n))
> teststat
[1] 1.506237
> pvalue <- pnorm(teststat,0,1,lower.tail = FALSE)
> pvalue
[1] 0.06600317

# Since p-value is greater than the significance level 5%, we cannot reject the null hypothesis.

# Example 5.2.2 Testing hypothesis for a population mean with unknown population standard deviation.
# Enter mu_0, n, xbar, and sample standard deviation, then calculate test statistic and p-value.

> mu0 <- 250
> n <- 16
> xbar <- 253
> s <- 10
> teststat <- (xbar - mu0) / (s / sqrt(n))
> teststat
[1] 1.2
> pvalue <- pt(teststat, n-1, lower.tail = FALSE)
> pvalue
[1] 0.1243749

# Since p-value is greater than the significance level 5%, we cannot reject the null hypothesis.

# Example 5.3.1 Testing hypothesis for two populations means when population variances are equal.
# Enter n1, n2, xbar1, xbar2, s1, and s2, then calculate the pooled variance, test statistic and p-value.

> n1 <- 15
> n2 <- 14
> xbar1 <- 275
> xbar2 <- 269
> s1 <- 12
> s2 <- 10
> pooledvar <- ((n1-1)*s1^2 + (n2-1)*s2^2) / (n1+n2-2)
> pooledvar
[1] 122.8148
> teststat <- (xbar1 - xbar2) / sqrt(pooledvar/n1 + pooledvar/n2)
> teststat
[1] 1.456923
> pvalue <- 2 * pt(teststat, n1+n2-2, lower.tail = FALSE)
> pvalue
[1] 0.1566703

# Since p-value is greater than the significance level 5%, we cannot reject the null hypothesis.

We can use aov() function in R for the analysis of variance.

Fit an Analysis of Variance Model using aov()

aov(formula, data = NULL, projections = FALSE, qr = TRUE, contrasts = NULL, ...)

formula A formula specifying the model.

data A data frame in which the variables specified in the formula will be found. If missing, the variables
are searched for in the standard way.
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projections Logical flag: should the projections be returned?

qr Logical flag: should the QR decomposition be returned?

contrasts A list of contrasts to be used for some of the factors in the formula. These are not used for any
Error term, and supplying contrasts for factors only in the Error term will give a warning.

# Example 5.4.1 Testing hypothesis for several populations means; one-way ANOVA.
# Enter data and change the level as a factor (as.factor()).

> y <- c(81,75,69,90,72,83, 65,80,73,79,81,69, 72,67,62,76,80, 89,94,79,88)
> f <- c(rep(1,6), rep(2,6), rep(3,5), rep(4,4))
> af <- as.factor(f)
> ymean <- tapply(y, af, mean); ymean

       1        2        3        4 
78.33333 74.50000 71.40000 87.50000 

> boxplot(y ~ af)

<Figure 5.6.1> Box plot for each grade
> an1 <- aov(y ~ af)
> summary(an1)

Call:
   aov(formula = y ~ af)

Terms:
                      af Residuals
Sum of Squares  643.6333  839.0333
Deg. of Freedom        3        17

Residual standard error: 7.025304
Estimated effects may be unbalanced
> summary(an1)
            Df Sum Sq Mean Sq F value Pr(>F)  
af           3  643.6  214.54   4.347 0.0191 *
Residuals   17  839.0   49.35                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# Since p-value (Pr(>F) = 0.0191 is less than the significance level 5%, we reject the null hypothesis.

We can use lm() function in R for the regression analysis.
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Fitting Linear Models using lm()
lm is used to fit linear models, including multivariate ones.

lm(formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting process.

weights an optional vector of weights to be used in the fitting process. Should be NULL or a numeric vector.
If non-NULL, weighted least squares is used with weights weights (that is, minimizing sum(w*e^2));
otherwise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain NAs. The default is set by the
na.action setting of options, and is na.fail if that is unset. The ‘factory-fresh’ default is na.omit.
Another possible value is NULL, no action. Value na.exclude can be useful.

method the method to be used; for fitting, currently only method = "qr" is supported; method =
"model.frame" returns the model frame (the same as with model = TRUE, see below).

model, x,
y, qr

logicals. If TRUE the corresponding components of the fit (the model frame, the model matrix, the
response, the QR decomposition) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offsets this can be used to specify an a priori known component to be included in the linear predictor
during fitting. This should be NULL or a numeric vector or matrix of extents matching those of the
response. One or more offset terms can be included in the formula instead or as well, and if more
than one are specified their sum is used. See model.offset.

# Example 5.5.1 Regression analysis.
# Enter data and change the level as a factor (as.factor()).
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> x <- c(4,6,6,8,8,9,9,10,12,12)
> y <- c(39,42,45,47,50,50,52,55,57,60)
> rg <- lm(y ~ x); rg

 
Call:
lm(formula = y ~ x)

Coefficients:
(Intercept)            x  
     28.672        2.503  

> plot(x, y); abline(rg)

<Figure 5.6.2> Simple linear regression

> summary(rg)

Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7119 -1.5695  0.5563  1.2931  1.3079 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  28.6722     1.6703   17.17 1.35e-07 ***
x             2.5033     0.1908   13.12 1.09e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.483 on 8 degrees of freedom
Multiple R-squared:  0.9556,    Adjusted R-squared:   0.95 
F-statistic: 172.1 on 1 and 8 DF,  p-value: 1.085e-06

# Example 5.5.3 Multiple regression analysis.
# Enter data and change the level as a factor (as.factor()).
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> y <- c(0.291,0.291,0.288,0.464,0.532,0.557,0.441,0.515,0.603,0.628,0.956,0.775,0.727,0.704,1.084)
> x1 <- c(21.0,21.8,22.3,26.6,27.1,27.4,27.9,27.9,29.7,32.7,32.7,33.7,34.7,35.0,40.6)
> x2 <- c(21.33,19.81,19.20,21.94,24.68,25.29,20.11,22.86,21.03,22.55,25.90,26.21,21.64,19.50,21.94)
> rg2 <- lm(y ~ x1+x2); rg2

 
Call:
lm(formula = y ~ x1 + x2)

Coefficients:
(Intercept)           x1           x2  
   -1.02357      0.03697      0.02366  

> summary(rg2)

Call:
lm(formula = y ~ x1 + x2)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.09087 -0.03822 -0.02772  0.03320  0.15786 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.023572   0.187535  -5.458 0.000146 ***
x1           0.036968   0.003491  10.590 1.92e-07 ***
x2           0.023663   0.008321   2.844 0.014792 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.06947 on 12 degrees of freedom
Multiple R-squared:  0.9242,    Adjusted R-squared:  0.9115 
F-statistic: 73.12 on 2 and 12 DF,  p-value: 1.902e-07

5.7 Exercise

5.1 A psychologist is working on physically disabled workers. Based on experience, the psychologist
believed that the average social (relationship) score of these disabled workers was greater
than 80. Twenty employees were sampled from the score population to obtain the following
result:

99, 69, 91, 97, 70, 99, 72, 74, 74, 76, 96, 97, 68, 71, 99, 78, 76, 78, 83, 66

The psychologist wants to know if the average social score of the population is correct. Assume
that the population follows a normal distribution and its standard deviation is 10. Test with a
significance level of 0.05.

5.2 The following is the weights of the 10 employees randomly selected who are working in the
shipping department of a wholesale food company.

154, 154, 186, 243, 159, 174, 183, 163, 192, 181 (unit pound)

Based on this data, can you say that the average weight of employees working in the shipping
department is greater than 160 pound? Use the significance level of 5%.

5.3 In a large manufacturer, the company manager claims that the average adaptation score of all
unskilled workers is greater than 60. Forty unskilled workers were selected randomly to check
this claim, and their test scores of adaptation scores were as follows.

73 57 96 78 74 42 55 44 91 91 50 65 46 63 82 60 97 79 85 79
92 50 42 46 86 81 81 83 64 76 40 57 78 66 84 96 94 70 70 81

Test the hypothesis at the significance level of 0.05 whether the manager's argument is correct.
What is the -value?p
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5.4 An analyst studies two types of advertising methods (A and B) retailers tried. The variable is the
sum spent on advertising over the past year. The following are the sample statistics extracted
independently from retailers of each type. (Unit million USD)

Type A: 
Type B: 

From these data, can you conclude that type A retailers have invested more in advertising than
type B retailers? (Significance level = 0.05)

5.5 Below are the entrance exam results for selecting new employees at a particular company. Test
whether the male population mean is equal to the female population mean using the
significance level 5%.

Male Female

49 86 40 45 48 93 97 58 58 98
58 82 52 56 50 85 80 60 62 80
62 72 65 60 64 70 78 67 69 88

60 72 66 65 75 78 62 64 74 58
68 72 67 61 62 72 79 71 74 73

5.6 An industrial psychologist thinks that the significant factor that workers change jobs is self-
esteem to workers' work. The scholar believes that workers who change jobs frequently (group
A) have lower self-esteem than those who do not (group B). The score data on self-esteem
were collected independently by sampling from each group.

Group A: 60 45 42 62 68 54 52 55 44 41
Group B: 70 72 74 74 76 91 71 78 78 83 50 52 66 65 53 52

Can this data support the psychologist's idea? Assume that the population scores are normally
distributed and that the population variance is unknown but the same. (Significance level = 0.01)

5.7 A company used four exhibition methods to test customers' responses to new products (A, B, C,
and D). Each exhibition method was used in nine stores by selecting 36 stores that met the
company's criteria. The total sales in USD for the weekend are shown in the following table.

Method A Method B Method C Method D

5 2 2 6

6 2 2 6

7 2 3 7

7 3 3 8

8 3 2 8

6 2 2 8

7 3 2 6

7 3 3 6

6 2 3 6

1) Draw a scatter plot of sales (y-axis) and exhibition method (x-axis). Mark the average sales of each
exhibition method and connect them with a line.

2) Test that the sales by each exhibition method are different in the amount of sales with the 5%
significance level. Can you conclude that one of the exhibition methods significantly affects on
sales?

5.8 The following table shows mileages in km per liter of gasoline obtained from experiments to
compare three brands of gasoline. In this experiment, seven cars of the same type were used
in a similar situation to reduce the variation of the car.

Gasoline A Gasoline B Gasoline C

14 20 20

n1 = 60, x1 = 14.8, s2
1 = 0.180–

n1 = 70, x2 = 14.5, s2
2 = 0.133–
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19 21 26

19 18 23

16 20 24

15 19 23

17 19 25

20 18 23

1) Calculate the average mileage of each gasoline brand. Draw a scatter plot of gas mileage (y-axis)
and gasoline brand (x-axis) to compare.

2) From this data, test whether there are differences between gasoline brands for gas mileage with a
5% significance level.

5.9 The result of a survey on job satisfaction of three companies (A, B, and C) is as follows: Test
whether the averages of job satisfaction of the three companies are different with a 5%
significance level.

Company A Company B Company C

69 56 71

67 63 72

65 55 70

59 59 68

68 52 74

61 57

66

5.10 The following data shows studying time for a week ( ) and the grade ( ) of six students.

Studying time ( ) Grade ( )

15 2.0

28 2.7

13 1.3

20 1.9

4 0.9

10 1.7

1) Find a regression line.
2) Calculate a 95% confidence interval in the average score of a student who studies an average of 12

hours a week.
3) Test for hypothesis , (significance level α = 0.01).

5.11 An economist argues that there is a clear relationship between coffee and sugar prices. 'When
people buy coffee, they will also buy sugar. Isn't it natural that the higher the demand, the
higher the price?' We collected the following sample data to test his theory.

Year Coffee price Sugar Price

1985 0.68 0.245

1986 1.21 0.126

X Y

X Y

H0 : β = 0.10,H1 : β < 0.10
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1987 1.92 0.092

1988 1.81 0.086

1989 1.55 0.101

1990 1.87 0.223

1991 1.56 0.212

1) Prepare a scatter plot with the coffee price on  axis and the sugar price on  axis. Is this data
true to this economist's theory?

2) Test this economist's theory by using a regression analysis.

5.12 A health scientist randomly selected 20 people to determine the effects of smoking and
obesity on their physical strength and examined the average daily smoking rate ( ,
number/day), the ratio of weight by height ( , kg/m), and the time to continue to exercise
with a certain intensity ( , in hours). Test whether smoking and obesity can affect your
exercising time with a certain intensity. Apply a multiple regression model by using 『eStat』.

smoking rate ratio of weight by height Atime to continue to exercise

24 53 11

0 47 22

25 50 7

0 52 26

5 40 22

18 44 15

20 46 9

0 45 23

15 56 15

6 40 24

0 45 27

15 47 14

18 41 13

5 38 21

10 51 20

0 43 24

12 38 15

0 36 24

15 43 12

12 45 16

X Y

x1
x2

y

x1 x2 y
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